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Discussion

The application of remote sensing data plays an increasingly important
role in the field of biodiversity monitoring for conservation. However, the
availability of various sensor types and analysis techniques complicates an in-
formed selection of the most appropriate remote sensing based methodology.
This study compared high-resolution RapidEye data and medium-resolution
Landsat 8 imagery to assist applied conservationists in this highly complex
decision-making process. Referring to the main research questions of this
study, it was specifically investigated which sensor and spatial resolution
lead to the most accurate land cover predictions in the context of mangrove
mapping in Southern Myanmar. It was furthermore examined whether the
selection of specific classifiers and predictor combinations distinctly influ-
ences land cover classification accuracies.

Previously presented results will be summarized and discussed in the follow-
ing paragraphs and the main findings will be associated with already existing
literature. Additionally, potential limitations and possibilities for improve-
ment will be addressed. Moreover, practical recommendations are formulated
for applied conservationists with regard to each influencing element. This is
done for the purpose of bridging the widely acknowledged gap between con-
servation science and its implementation in applied conservation and ecology
(Sunderland 2009: 549; Knight et al. 2008). As it is assumed that practi-



tioners often face a lack of e.g. time, financial resources, software or technical
facilities, it is attempted to make these recommendations as convenient, ap-
plicatory and simple as possible. Therefore, only one specific sensor, spatial
resolution, model and predictor combination is recommended. However, it
has to be considered that these recommendations represent simplifications of
the rather complex and multi-faceted results.

Sensor Comparison

Comparing RapidEye and Landsat 8 sensors with their original spectral and
spatial capabilities, it was found that the utilization of medium-resolution
Landsat 8 imagery led to higher land cover classification accuracies than
the application of high-resolution RapidEye data in the context of mangrove
mapping in Myanmar. Although RapidEye images led to negligible higher
overall accuracies when discriminating between the general land cover classes
‘Water’, ‘Non-vegetated’ and ‘Vegetation’, Landsat 8 derived classifications
considerably outperformed RapidEye based land cover classifications when
discriminating between mangrove and terrestrial vegetation as well as dif-
ferent mangrove land cover classes. Therefore, taking only initial spectral
and spatial capabilities into account, medium-resolution Landsat 8 imagery
can be identified as being more suitable for mangrove forest monitoring in
Tanintharyi Region than high-resolution RapidEye imagery. These results fit
with several previously published literature contributions. Green et al. (1998:
935, 946) found for example that mapping eastern Caribbean mangroves was
possible using Landsat TM data with a spatial resolution of 30 meters, while
SPOT XS/PAN data with a spatial resolution of 10 and 20 meters “failed to
discriminate satisfactorily between mangrove and non-mangrove vegetation”.
A similar pattern was discovered by Gao (1999) when also comparing Land-
sat TM and SPOT images with XS and PAN mode. Investigating mangroves
in the western Waitemata Harbour in New Zealand, the study found that
the most accurate classification results were derived from medium-resolution
Landsat TM images, whereas SPOT-generated results were considerably less
accurate. A further study of Lee & Yeh (2009) adds to these findings by
comparing Landsat, SPOT and Quickbird imagery. Based on investigations
of estuary mangrove communities in Taiwan (Danshui River), the authors
report highest user accuracy values for Landsat imagery followed by SPOT
and QuickBird data (Lee & Yeh 2009).

Recommendations for Practitioners:

Considering RapidEye and Landsat 8 sensors with their original spectral
and spatial capabilities, it is recommended to utilize Landsat 8 imagery




for mangrove mapping in Southern Myanmar. Especially when discrim-
inating between mangrove and terrestrial vegetation as well as different
mangrove land cover classes, Landsat 8 derived classifications exhibit
considerably higher overall accuracy values than RapidEye based classi-
fications.

However, the pure sensor comparison could not reveal any information
about whether the identified differences were caused by discrepancies either
in spatial or spectral resolution.

Spatial Resolution

a) RapidEye (5 - 30 m)

To test whether performance discrepancies were a matter of spatial resolu-
tion, RapidEye imagery was resampled to coarser resolutions of 5, 10, 15,
20, 25 and 30 meters. The comparison of aggregated RapidEye imagery with
the initial 5 meter image could show that classification accuracies inversely
increased with spatial resolution when discriminating between the land cover
classes ‘Water’, ‘Non-vegetated’, ‘Vegetation’ or ‘Mangrove vegetation’ and
‘Terrestrial vegetation’ This trend was less pronounced when discriminating
between the different mangrove land cover classes ‘Intact to slightly degraded
mangroves’, ‘Degraded mangroves’, ‘Heavily degraded mangroves’ and ‘Nipa’.
The reason might be that the patch size of the mapping objects was — due
to the high level of detail — relatively small within the third classification
scheme. Pixel aggregation did therefore not necessarily improve classifica-
tion accuracies. However, aggregated RapidEye images still led to higher
accuracies than the initial 5 meter image. It can therefore be inferred that
the aggregation of high resolution RapidEye data to lower spatial resolutions
resulted in an increase of classification accuracies. The reason for this might
be that in high-resolution satellite images one pixel does not represent a
specific land cover type anymore (e.g. terrestrial vegetation), but rather rep-
resents only a single component of the relevant land cover class (e.g. rubber
plantation) (Horning et al. 2016). A fine spatial resolution of remote sensing
data might therefore lead to an increase of the number of identifiable sub-
class features. Consequently, the resulting increase of within-class spectral
variability may hamper the satisfactory discrimination of spectrally mixed
land cover classes (Wang et al. 2004: 5656). Therefore, this study’s main
results suggest, that the appropriate spatial resolution is strongly coherent
with the patch size and spectral variability of the relevant mapping objects.




Klemas (2011) verifies this finding by indicating that high-resolution images
are more sensitive to “within-class spectral variance, making separation of
spectrally mixed land cover types more difficult” (Klemas 2011: 426). More-
over, these results are confirmed by Horning et al. (2016) who allude to
the “popular misconception that it is always best to get the finest resolution
imagery you can afford” (Horning et al. 2016: 172). They refer again to the
problem of high-resolution satellite imagery to cause high within-class spec-
tral variability based on the increase of identifiable sub-class components.
The authors point in this context to image segmentation methods which aim
at clustering pixels to meaningful objects but admit at the same time that
“those algorithms have difficulty in gradient dominated natural ecosystems
and they add an extra layer of effort” (Horning et al. 2016).

However, there is also published literature which puts these findings into
question. Kuenzer et al. (2011: 896) point e.g. at new opportunities
in the area of mangrove mapping which were opened up by the launch of
high-resolution QuickBird and IKONOS-2 satellites. The authors state, that
high-resolution sensors enable an improved discrimination between mangrove
forest patches and other plant species assemblages (Kuenzer et al. 2011).
Studying black mangroves (Avicennia germinans) along the south Texas Gulf
Coast, Everitt et al. (2008: 1585) found that high-resolution satellite imagery
is suitable for the effective discrimination of black mangrove populations with
good to excellent accuracy assessment results. However, relatively little re-
search has so far been published on the use of high-resolution satellite imagery
for mangrove ecosystem mapping (Kuenzer et al. 2011: 896). Therefore, this
study considerably contributes to fill this research gap.

b) RapidEye (30 m) vs. Landsat 8 (30 m)

Comparing Landsat 8 and RapidEye imagery, each with a spatial resolution
of 30 meters, it was found that both datasets performed similarly with respect
to the accurate prediction of vegetation in general and the discrimination of
different mangrove classes. However, despite featuring the same spatial reso-
lution, Landsat 8 imagery led to a notably higher mean overall classification
accuracy (~95 %) than RapidEye data (~87 %) when discriminating between
mangrove and terrestrial vegetation (cp. Table 3.2). Therefore, it can be as-
sumed that the different spectral resolution of both sensor types was respon-
sible for their unequal performance with respect to the mapping of mangrove
forests in Tanintharyi Region. This assumption is supported by the com-
parison of Landsat TM and SPOT images by Gao (1999) which found that
Landsat TM images are more suitable for the accurate mapping of mangrove
forests than SPOT satellite data. Referring to the differences in spectral res-




olution, Gao (1999) concludes that spectral capabilities of satellite sensors
play a more important role for mangrove mapping in a temperate zone than
a high spatial resolution (Gao 1999: 2823). However, Wang & Sousa (2009)
argue, that spatial resolution is more important than spectral resolution for
an effective mangrove mapping with regard to the differentiation between
individual mangrove species.

Taking results from all three classification schemes into account, a spatial
resolution of 30 meters was identified as being most suitable for mangrove
mapping in Southern Myanmar. However, in the scope of this study, it was
not possible to investigate whether a pixel aggregation to resolutions of e.g.
40, 50 or 60 meters could even further enhance classification accuracies.

Recommendations for Practitioners:

As classification accuracies inversely increased with spatial resolution
within the first and second classification scheme, it is recommended to use
satellite imagery with a spatial resolution of 30 meters when discriminat-
ing between the land cover classes ‘Water’ ‘Non-vegetated’, ‘Vegetation’,
‘Mangrove vegetation’” or ‘Terrestrial vegetation. Although RapidEye im-
agery with a spatial resolution of 10 meters led to the most accurate clas-
sification results when discriminating between different mangrove classes
(82.9 %), its minor superiority compared to Landsat 8 data (82.4 %) with
a spatial resolution of 30 meters does not legitimate its cost-intensive ac-
quisition. Therefore, it is recommended to use freely available satellite
data with a spatial resolution of 30 meters in the context of mangrove
mapping in Southern Myanmar.

To find out whether this resulting pattern was caused by the different
spectral capabilities of both sensors, a comparative analysis of different pre-
dictor combinations was conducted. Prior to this, the best model was iden-
tified within each classification scheme.

Model Comparison

The evaluation of four different classifiers — RF, SVM, NNET and PLS —
revealed that there are distinct differences in variability and mean overall
accuracies depending on the selected algorithm. This finding is confirmed by
several previously published studies, investigating e.g. support vector ma-
chines (SVMs), decision trees (DTs), Random Forests (RFs) or the maximum
likelihood classifier (MLC) (Duro et al. 2012, Huang et al. 2002).

The land cover predictions of the SVM classifier were identified as being




most accurate in the first and third classification scheme, whereas the PLS
classifier led to the most accurate results within the second classification
scheme. Therefore, the SVM classifier was identified as being most suitable
for mangrove forest mapping in Tanintharyi Region. This is based on the fact,
that it exhibited the lowest variability within all three investigated classifica-
tion schemes by revealing simultaneously the highest mean overall accuracy
values within two of three classification schemes (cp. Tab. 3.3). Further-
more, a detailed model comparison suggested avoiding the application of the
NNET model, since it featured the highest variability within all classifica-
tion schemes as well as lowest mean overall accuracies within two of three
classification schemes. However, model tuning and parameter adjustments
could possibly enhance model performances for all algorithms including the
NNET, but were not applied in the course of this study for reasons mentioned
in section 2.5.

Recommendations for Practitioners:

The SVM model exhibits the lowest variability within all three investi-
gated classification schemes by revealing simultaneously the highest mean
overall accuracy values within two of three classification schemes (cp.
Tab. 3.3). Hence, the SVM classifier with a radial basis kernel is identi-
fied as being the most suitable model for mangrove mapping in Southern
Myanmar and is therefore recommended for practical mangrove mapping
activities.

Predictor Comparison

The comparative analysis of different predictor combinations revealed, that
the number and properties of utilized predictor layers crucially affects land
cover classification accuracies. Strikingly, overall accuracy values do not au-
tomatically increase with the number of predictor layers. Overall accuracies
derived from RapidEye imagery rather increased within the second and third
classification scheme when the Red Edge band was excluded from the clas-
sifying process. It can therefore be inferred that RapidEye’s Red Edge band
is not necessarily required for the effective mapping of Southern Myanmar
mangroves. In contrast, it might be even advantageous to exclude the Red
Edge band from particular mapping procedures.

The comparison of different predictor combinations further revealed that the
superiority of the Landsat 8 sensor in discriminating between mangrove and
terrestrial vegetation is mainly attributable to its additional spectral bands
(Fig. 19 (b)). Omitting all Landsat 8 bands which are not provided by
the RapidEye constellation — coastal aerosol, SWIR 1, SWIR 2 and Cirrus



band — Landsat 8 images led to even less accurate classification results than
aggregated RapidEye images. Therefore, these bands provide valuable addi-
tional information which considerably enhance the accurate discrimination
between mangrove and terrestrial vegetation. However, it was not possible in
the scope of this study to investigate more closely which of these four bands
is distinctly responsible for the increase of Landsat 8 derived classification
accuracies.

In addition, this study found that the fusion of RapidEye and Landsat 8
data each with a spatial resolution of 30 meters led to relatively high classi-
fication accuracies within all three classification schemes. Therefore, remote
sensing data fusion techniques are identified as promising future opportunity
in the context of mangrove mapping, which are worthy of further explo-
ration. The identification of multi-sensor data fusion as possibility to fur-
ther improve the accurate mapping of mangrove forest ecosystems also fits
with previously published knowledge. Studying the data fusion of fine and
coarse spatial resolution satellite images, Kempeneers et al. (2011) found
that their applied data fusion approach increased “the robustness of forest-
type mapping within Europe” (Kempeneers et al. 2011: 4977). Confirming
these results, multi-sensor data fusion techniques have been identified as a
promising research area in the field of remote sensing applications within a
number of further literature contributions (e.g. Dong et al. 2009; Zhang
2010; Heumann 2011a).

Recommendations for Practitioners:

Based on overall accuracy values presented in Tab. 3.4 and Fig. 19,
the ‘All bands’ predictor combination is identified as being most suitable
for mangrove mapping in Southern Myanmar using Landsat 8 imagery.
The inclusion of NDVI, SAVI, RVI or NDWTI is not necessary as it does
not lead to an improvement of accuracy assessment results. Hence, it
is recommended to use Landsat 8 imagery with its original spectral ca-
pabilities. Although a combination of RapidEye and Landsat 8 data,
each with a spatial resolution of 30 meters can slightly increase overall
accuracy values, a fusion of both datasets is not recommended mainly for
two reasons. First, the increase of overall accuracy values is negligibly
low while complicating the classification process. Second, considering the
high costs of RapidEye imagery, the minor accuracy improvement does
not justify the purchase of cost-intensive RapidEye images in addition to
freely available Landsat 8 imagery.




Land Cover Maps and their Variability

Thematic land cover maps resulting from the basic classification of ‘Water’,
‘Non-Vegetated” areas and ‘Vegetation’ were fairly similar — irrespective of
the sensor, spatial resolution, classification algorithm and predictor combi-
nation. The main reason for this is possibly the low level of detail inherent
in the land cover maps generated within the first classification scheme. This
is based on the fact, that a low level of detail generally leads to high classi-
fication accuracies (Horning et al. 2010: 27), which also causes a generally
low variability. Nevertheless, high variability could be observed in mudfiats,
shallow waters or occasionally flooded areas (Fig. 21). The reason for this
might be the spectral mixture of the two land cover classes ‘Water” and ‘Non-
vegetated’ within pixels representing these areas. Relatively high variability
could also be found in built-up areas such as the city of Myeik. This might
be caused by the fact that mapped objects (e.g. individual houses, single
trees, artificial ponds) are in many cases considerably smaller than the pixel
size, which leads again to a strong spectral mixing of different land cover
classes within one pixel. This assumption is reinforced by the fact that the
variability increases in urban areas with coarser spatial resolutions (Fig. 21).
In contrast, highly pronounced differences in resulting land cover maps could
be observed when discriminating between mangrove and terrestrial vegeta-
tion (Fig. 23). Results from the predictor comparison could reveal that this
is mainly due to the different spectral capabilities of the RapidEye and Land-
sat 8 sensors. Clearly pronounced differences in thematic land cover maps
can also be observed within the third classification scheme which portrays
different mangrove classes. Whereas e.g. land cover maps based on fused
RapidEye and Landsat 8 imagery depict a fairly realistic reproduction of the
distribution of mangrove classes within the study area, other land cover maps
even omit entire mangrove classes (Fig. 24). Results of the comparison of dif-
ferent models revealed that this is mainly caused by the poor performance of
the NNET model. Variations in land cover class prediction are again evenly
distributed throughout the whole study area when considering results based
on high-resolution RapidEye data. In contrast, variability found in Landsat
and low-resolution RapidEye based land cover maps is especially aggregated
along the edges of land cover classes (Fig. 25). This aggregation might be an
effect of the better filtering of within-class spectral mixing caused by lower
spatial resolutions.

Recapitulating this study’s main findings, the first hypothesis stating that
high resolution RapidEye imagery leads to higher classification accuracies
than medium-resolution Landsat 8 imagery in the context of mangrove map-



ping in Southern Myanmar cannot be confirmed. In contrast, medium-
resolution Landsat 8 imagery could be identified as being more suitable for
an effective mangrove mapping in Tanintharyi Region. This is mainly at-
tributable to its additional spectral bands. Results of this study revealed
that selected classification algorithms and predictor combinations crucially
affect overall accuracies. Therefore, the second hypothesis stating that clas-
sification models as well as number and characteristics of predictor layers
strongly influence land cover classification accuracies can be verified.
Consequently, the major findings of this study suggest that medium-resolution
remote sensing data is more suitable for an accurate mapping of mangrove
forests in Southern Myanmar. Moreover, a high spectral resolution was iden-
tified as being more important than a high spatial resolution of remote sens-
ing data in the field of mangrove mapping in Tanintharyi Region. Addi-
tionally, data fusion techniques were identified as a promising opportunity
to further enhance the effectiveness and accuracy of remote sensing based
mangrove monitoring.

Ensuring a scientifically sound research procedure, several methodological
limitations of this study have to be acknowledged. The scope of this study
allowed only the comparison of RapidEye and Landsat 8 remote sensing char-
acteristics. The inclusion and comparison of further sensors, e.g. Sentinel 2,
MODIS, SPOT or HyMap, could help to provide a more holistic overview
about the suitability of different sensor types with respect to mangrove map-
ping. In this context, it is especially recommended for future research to
include active remote sensing instruments (e.g. LiDAR) in mangrove moni-
toring investigations. The utilization of the LiDAR pulsed laser enables the
collection of three-dimensional information about the surface of the Earth.
This could be uniquely beneficial for the accurate separation of different
mangrove degradation classes as they are discriminated in many cases by
their characteristic height or density. It is also highly recommended to test
the suitability of hyperspectral remote sensing data for mangrove ecosystem
monitoring. With more than 100 spectral bands, HyMap data might strongly
contribute to a satisfactory discrimination of different mangrove classes in-
dependent of the high level of extracted detail.

In accordance with the inclusion of further sensors, taking into account addi-
tional classifiers might also reveal further classification improvements. Like-
wise, there are numerous possibilities of enhancing accuracy assessment re-
sults by including further predictor layers. Using for example a principal
component analysis (PCA) to create an additional predictor dataset could in-
crease the accuracy of land cover predictions. As common and standardized
PCA approach, Tasseled Cap transformation coefficients (e.g. the “green-



ness” index) could be used to improve remote sensing based land cover clas-
sifications (Horning et al. 2010: 111). A further promising predictor is the
Mangrove Recognition Index (MRI) developed by Zhang & Tian (2013). Un-
fortunately, the MRI could not be included in this study, as multi-temporal
Landsat images recorded at different tide levels are necessary for its calcula-
tion. In addition, the inclusion of texture metrics AAS e.g. mean, variance or
homogeneity 4AS as predictor variables could also contribute to an enhance-
ment of accurate land cover predictions. However, defining the most suitable
size of the moving window for texture statistic calculations could be a major
challenge (Feng et al. 2015: 1080). Moreover, a multi-temporal approach
which takes seasonal changes and variability in forest structure and pheno-
logical appearance into account could be a possible source of classification
improvement with regard to different forest species (Jensen 2004; Wang &
Sousa 2009).

Besides these methodological limitations, several potential sources of error
and the introduction of a certain level of subjectivity during the research pro-
cess have to be considered as well. Initially, it has to be kept in mind, that
the ground truth points used within the course of this study were collected
in May and June 2015. The time of sensor overpass and the field campaign
are therefore not coincident. A collection of ground truth points at the same
time of sensor overpass could possibly have further enhanced the precision of
the classification results.

Moreover, it has to be acknowledged that the creation of training data based
on visual interpretations of VHR and ground truth data is generally highly
subjective. Thematic land cover classes only represent visual cues existing in
the original image and resulting land cover maps can therefore only be per-
ceived as rough abstractions of reality (Horning et al. 2010). A further level
of subjectivity is inherently introduced within the process of defining impor-
tant land cover classes and excluding apparently irrelevant land cover types.
For instance, there are numerous different definitions of ‘forest’ in general as
well as of more specific cover types such as ‘degraded forest’ (CBD 2014; FAO
2000). The choice of the applied definition is always based on a subjective
decision and might strongly affect the resulting land cover map. In addition,
the validation procedure of the developed classification schemes represents
another potential source of error. The partitioning of gathered data from the
training polygons into 70 % training and 30 % test data implies that training
as well as test data are sampled within the same polygons which can intro-
duce a certain bias. To ensure complete independence of training and test
data, two datasets could e.g. be generated separately by two different people
using the same land cover descriptions. As a prerequisite, these people would
need to be trained well together to ensure a consistent classification. Even
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more reliable would be the coverage of all utilized land cover classes with a
relatively high number of ground truth points collected during a field cam-
paign. These sample points could be used for training as well as validation
purposes. But even the assignment of ground truth points to specific land
cover classes during a field campaign entails the introduction of a certain
level of subjectivity, as criteria such as ground coverage are in most cases
based on subjective estimations.

Furthermore, some methodological difficulties inherent in any land cover clas-
sification approach have to be considered. First of all, land cover classifica-
tions lead to thematic maps in which individual classes are mostly portrayed
as discrete entities with well defined boundaries. However, the actual tran-
sition between different land cover types is in many cases rather gradient
dominated (Horning et al. 2010: 83). Therefore, it is highly important
in the context of biodiversity conservation management that thematic land
cover maps are perceived and handled as an abstraction of the actual land
cover and not as a congruent representation of reality. Reporting validation
metrics and accuracy values is therefore of utmost importance. However, the
presentation of accuracy statistics is complicated by the fact that accuracy
terms are used inconsistently between different disciplines and research areas.
Whereas ‘accuracy rates’ are reported in some disciplines, others announce
the ‘error rate’ of their land cover classification (Kuhn & Johnson 2013). In
order to avoid future misconceptions, a standardization of accuracy terms
would be highly desirable.

Although results obtained from this study can essentially contribute to a
more informed selection of appropriate remote sensing data for an effective
mangrove monitoring in Southern Myanmar, it has to be acknowledged that
the presented results cannot simply be transferred to any other geographic
area, natural ecosystem or biodiversity monitoring context. Sensor suitability
might vary strongly with respect to different conservation issues and objects
or scales of interest. The careful consideration of the appropriate remote
sensing data depending on each specific context plays therefore a crucial role
for an informed and meaningful conservation management.

In spite of these potential limitations, this study’s findings can strongly
contribute to a more informed decisions of applied conservationists about
the most appropriate remote sensing based methodology in the context of
mangrove mapping in Southern Myanmar. Previously formulated practi-
cal recommendations represent a serious attempt of bridging the so-called
‘research—implementation gap’ and try to overcome the failure of science to
fruitfully inform conservation practitioners (Sunderland et al. 2009; Knight
et al. 2008).
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Besides the mainly methodological findings, the results of this study can
also have practical implications for a reasonable planning of mangrove con-
servation in Southern Myanmar. As only 0.1 % of Myanmar’s coastline is
protected so far, a meaningful expansion of the protected area network is
of utmost importance (Zoeckler et al. 2013: 29). This is especially true in
the current context of rapid political and economic transformations which
are reshaping the country after decades of isolation. The enormous infras-
tructural and economic developments in Southern Myanmar (e.g. planned
industrial zone in Myeik, Dawei deep sea-port and Special Economic Zone)
increasingly imperil Tanintharyi’s already endangered mangrove ecosystems
(Myanmar Investment Guide 2013; Webb et al. 2014). The currently ongo-
ing mismanagement and over-exploitation of Tanintharyi’s mangrove forests
is also reflected by the results of this study (Tab. 4.1).

Only 22 % of the mangrove forest in the study area could be identified as
'Intact to slightly degraded mangroves’ 63 % of the mangrove area was on
the other hand classified as being degraded or even heavily degraded (Tab.
4.1). Interestingly, most intact mangrove areas are found in relative prox-
imity of the two major towns in the study area (Kyunsu & Myeik). Heavy
degradation of mangroves is most pronounced in the more remote areas in
the Southern part of the study area (e.g. Sakanthit & Kanmaw islands). A
detailed threat analysis could reveal potential reasons for this pattern and is
recommended for future investigations.

Table 4.1: Area and Percentage per mangrove land cover class. Area calculations
are based on the most accurate classification result within the third classification
scheme (fused RapidEye and Landsat 8 dataset, RF, allbands). The area size is
rounded to two decimals. Percentages are rounded to whole numbers.

Land cover class Area [km?] Percentage
Intact to slightly degraded mangroves 280.57 22 %
Degraded mangroves 584.69 45 %
Nipa 190.28 15 %
Heavily degraded mangroves 235.18 18 %
TOTAL 1290.72 100 %

According to interviews conducted during the field campaign, the main
reasons for the degradation of mangrove forests in Southern Myanmar are
the large-scale production of charcoal as well as unsustainable extraction of
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mangrove wood for firewood and construction materials (Appendix A.1, A.4
- A.10).

Belonging to MOECAF, Myanmar’s Forest Department is very interested in
the implementation of effective measures for coastal protection to ensure the
provision of crucial ecosystem services (FD / MOECAF 2015). There is also
a range of national and international NGOs (e.g. FFI, FREDA, BANCA)
which are already engaged in ecologically meaningful conservation planning
in Tanintharyi Region. Proposed Reserved Forests (RF) and Public Pro-
tected Forests (PPF) within the study area are shown in Fig. 26.
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Figure 26: Left: Distribution of mangrove land cover classes based on a
fused RapidEye and Landsat 8 dataset. Right: Location of proposed RF and
PPF areas within the study site. Source: Forest Department Myanmar, FFI
Myanmar, MIMU.

These proposed protected areas already comprise several mangrove re-
gions which were identified in the course of this study as still being in a
relatively good shape (Fig. 26 b). However, the proposed conservation areas
still lack official approval. Prior to the formal demarcation of these regions as
protected areas, it is essential to raise acceptance of these conservation areas
within the local communities which are living along Tanintharyi’s coast. A
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further prerequisite is to refine the boundaries in an ecologically worthwhile
way.

The remote sensing based methodology which was developed and investigated
in the course of this study can be a valuable contribution to the meaning-
ful refinement of ecologically sound protected areas in Southern Myanmar.
The achievement of good to excellent accuracy assessment results within the
multi-scale classification approach proves the developed methodology as be-
ing highly suitable for replication. The fact that freely available Landsat 8
imagery was identified as being more suitable for an accurate mangrove mon-
itoring in Southern Myanmar than cost-intensive RapidEye data illustrates
the great opportunities which are currently provided to conservationists by
openly available databases. This is even highlighted by the very good clas-
sification results which were achieved in the course of this study by using
open-source software, such as R or QGIS.
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