UNIVERSITY OF TWENTE.

Anton Vrieling

Nationalpark Bayerischer Wald

GROUP ON

esa

GEO BON

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

NDVI SERIES

- Phenology: need for frequent observations before, during, and after key phenological phases
 - Phase 1: combine RapidEye and SPOT5 (March September)
 - Not possible to model senescence phase, only green-up
- Step1: NDVI calculation NDV timeseries for x=1732, y=550 Input: atmospherically-corrected images Quick intercalibration red/NIR bands 0.6 (-) MON Use ± same date image 0.4 Not an issue when using single source 0.2 RapidEve SPOT5 0.0 Apr

CLOUD MASKING

- SPOT5: multi-temporal cloud detection at 100m resolution
 - much time between cloud-free acquisitions
 - small clouds missed
- Now use CESBIO's mask
 - Accuracy not always great...
 - cloud shadow update (CESBIO)

- RapidEye:
 - To increase confidence in NDVI-values over time (and maximally use available data): manual digitization

GEOMETRIC ACCURACY

- SPOT-5 are perfectly aligned between them
- RapidEye has some small shifts
 - different observation angles
 - no correction applied
- Offset S5 & RE: manual shift (max. 15 m in single direction)

FUNCTION FITTING (1)

- Goal "reconstruct" per pixel real vegetation timeline from irregularly-spaced observations
- Hyperbolic tangent model (single)
 - Double models combining green-up/senescence
 - Meroni et al (2014) and Vrieling et al (2016)

For 2015 only applied to single season green-up

Constraints:

- $a_0 \rightarrow$ lowest limit = 0.5 * minNDVI
- $a_1 \rightarrow$ upper limit = 1.25 * (max min)
- Model: $NDVI(t) = a_0 + a_1 \frac{\{\tanh[(t-a_2)*a_3]+1\}}{2}$
- We apply the model to NDVI data from 1 March to 31 August
- Assess 4 parameters using a least-squares method
 - Single fit vs future iterative fitting...
- Requirements/assumptions:

FUNCTION FITTING (2)

- Baseline is included (i.e. first images show the "low" NDVI level before onset)
- Little senescence yet in that period (although effect not so strong)
- Several good-quality observations between "low" and "high" NDVI.

PHENOLOGICAL PARAMETERS

- We could directly use parameters of the model, but...
 - Retrieval may not be stable and extrapolate much beyond green-up period
- Commonly-used: thresholds
 - <u>maxNDVI</u>: the maximum NDVI value, i.e. the fitted value for 31 August
 - <u>AMP</u>: the difference between the fitted NDVI value for 31 August and 1 March.
 - SOS : the DOY when the fitted function reaches <u>20% of AMP</u>
 - <u>PS</u>: the DOY when the fitted function reaches <u>90% of AMP</u>
 - <u>LG</u>: PS minus SOS

RESULTS: NORTH WYKE

start of season

amplitude

RESULTS BAVARIA (1): SOS

RESULTS BAVARIA (1): MAXNDVI

SAMPLE PROFILES: SCHIERMONNIKOOG

RapidEye

SPOT5

Sep

Sep

CONCLUSIONS IMAGE PROCESSING

- High-res phenology: still experimental, but promising...
- Need for frequent observation
 - Capture several images before/during/after green-up onset
 - Multiple satellite sensors? OK, but adds uncertainty (intercalibration...)
- Main issues:
 - Bavaria: few images at start (for lower latitudes) & cloudy
 - North Wyke: little variability for grassland between March-September
- Cloud mask vs frequency
 - Iow frequency of observation + inaccurate cloud mask = high uncertainty
- Model fitting
 - Possibility to iterate (to implement and test further) → improvement?
- Full year(s) of data preferable: joint accounting for senescence (even if earlier)

TOWARDS SENTINEL-2 FOR PHENOLOGY

- Key issue for phenology:
 - Can we get sufficient cloud-free data points across relevant parts of the vegetation year? (e.g., rapid green-up in Bavaria)
 - Is cloud-masking in sen2cor effective? (NDVI certainty...)
 - Multi-year data will help, also to better understand "average" season behaviour (for natural systems; and remark valid towards future!)
- Data access/processing issues:
 - Possibility downloading per 100x100km tile?
 - high download/storage demand for temporal analyses
 - Sen2Cor: further testing needed

PHENOLOGICAL CAMERAS

- Cameras installed in May 2015 (a bit late to fully capture green-up):
 - Bavaria: 14 North Wyke: 5 Schiermonnikoog: 10
- to continue operations during 2016 (at least)
- 10 photos daily
- Overexposure issues: replacement cameras but unlikely to fully resolve → solution = manual photo selection
- Several useful time series were obtained
 - To be compared with NDVI series
 - However, green-up not fully captured due to late installation
- GCC = G / (R+G+B)
 - Filtering: take 90th percentile per 3 days

EXAMPLE: SCHIERMONNIKOOG

FUTURE WORK: COMBINE CAMERA AND NDVI SERIES

(T) 60°F15℃

08-16-2015 13:30:

- Validation of green-up
- Greenness nadir ≠ camera view...