SAR revealing hot-spots of internal solitary waves in the Eurasian Arctic

Igor Kozlov¹, E. Zubkova¹, V. Kudryavtsev¹, A. Zimin², A. Myasoedov¹, B. Chapron³,⁴

¹ Satellite Oceanography Laboratory, Russian State Hydrometeorological University, St. Petersburg, Russia ² Institute of Oceanology RAS, St. Petersburg Branch, St. Petersburg, Russia ³ Laboratory d’Oceanographie Spatiale, Ifremer, Brest, France

* Corresponding author e-mail: igor.eko@gmail.com

** Internal waves (IWs) are important for dynamics of the Arctic Ocean.
** Recent in situ observations indicate enhanced IW-related vertical mixing over rough topography fostering the diffusion of heat from Atlantic water to the Arctic Ocean [1].
** Yet, the locations of enhanced IW activity and mixing still remain unclear.

• In the vicinity of the critical latitude (74.5°N) tidally generated IWs are similar to unsteady lee waves with short spatial and temporal scales and propagate in the form of packets of internal solitary waves (ISW) [2].
• Hot regions frequently observed by space-borne Synthetic Aperture Radars

MAIN RESULTS

4290 ISW PACKETS WERE IDENTIFIED IN 2880 ASAR IMAGES

KARA SEA

- IWs in the Kara Gates Strait
 Amplitudes ~30 m, wavelength 20-40 km (Morozov et al., 2009-10)

- Large-scale nonlinear internal waves in the White Sea

WHITE SEA

- Larger-scale nonlinear internal waves
 Amplitudes ~30 m, wavelength 20-40 km (Morozov et al., 2009-10)

- IKEs over the Arctic shelf
 Amplitudes ~30 m, wavelength 50 km (Morozov et al., 2009-10)

• The reported study was funded by RFBR, research projects No. 14-05-31423 mol a, 15-05-04639 A. The authors also acknowledge the support of the Mega-Grant of the Russian Federation Government under Grant №11.334.31.0078, project of the Ministry of Education and Science of the Russian Federation RFMEFI61014X0006, and project part of the Governmental Task №5.2483.2014.K.

REFERENCES