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ABSTRACT 

Crop systems are constantly changing due to 

modifications in the agricultural practices to respond 

to market changes, the constraints of the 

environment, the climate hazards... Rice cultivation 

practiced in the Camargue region (SE France) have 

decreased these last years, however rice plays a 

crucial role for the hydrological balance of the 

region and for crop systems desalinizing soils. The 

aim of this study is to analyze the potentialities of 

remote sensing data acquired at high spatial and 

temporal resolution (HRST) to identify the main 

agricultural practices and estimate their impact on 

rice production. A large dataset acquired over the 

Camargue from the Take5 experiment (SPOT4 in 

2013 and SPOT5 in 2015), completed by Landsat 

data has been used. Two assimilation methods of 

HRST data were evaluated within a crop model. 

Results showed the impact of the spatial variability 

of practices on the yields. The sowing dates were 

retrieved from inverse procedures and gave 

satisfactory results compared to ground surveys.  

 

 

1 INTRODUCTION  

 

 

In Europe and in many parts of the world, agriculture 

remains a key component of the social and economic 

dynamics. However, these last years, many external 

factors such as the climate change, the environment 

protection, the market evolution led to significant 

changes in the crops systems [1]. Rice cropping 

practiced in the Rhône Delta area (SE France, 

43°36’4.31N – 4°33’23.22E) called Camargue region 

have shown, these last years, great variations in the 

cultivated surfaces and in the yields. Various factors can 

explain this variability such as agricultural policy and 

technological development, climate hazards, soil and 

agricultural practice variability. In the Camargue region, 

rice plays a crucial role for the hydrological balance. 

The aquifer functioning is strongly influenced by water 

inflows related to agricultural activities (irrigation, 

flooded crop). Flooding of rice fields with water from 

the Rhone river contributes to control the soil salinity of 

groundwaters and ponds. Most of farmers cultivate rice 

crop because: (a) the flooded conditions reduce the 

salinity level and form irrigated lands useful for dry 

cereal crops in rotation and (b) the availability of fresh 

water is high. A wide variability is observed in 

agricultural practices from organic farming to high level 

of herbicides and fertilizer uses, inducing negative 

impacts on the environment. The agronomists are 

continuously struggling to enhance crop production with 

the use of minimum resources. This requires strategies 

to efficiently manage available resources with variable 

climatic conditions to increase productivity of 

agriculture. Crop models are useful tools to test 

different scenarios by varying climate, practices and 

soils conditions to analyze the impact on the yield and 

on the environment. A first step is to know the range of 

variability of the most important parameters of the 

model to apply it on a given region. If the 

implementation of crop models at plot scale is relatively 

simple because the information relating to soil and 

farming practices is easily accessible, the extrapolation 

to larger scales (farm scale or production area) is more 

difficult because soils and practices vary a lot in space, 

and can induce great differences in yields. Remote 

sensing, particularly acquired at fine spatial resolution 

can provide useful information for the spatialization of 

surface characteristics [8, 9]. Various types of crop 

models have been developed. They are characterized by 

their complexity and therefore their ability to be 

informed and thus spatialized [3]. Among them, STICS 

is a generic crop model developed since 1996 at INRA 

by [2], which can simulate rice among other crops, 

taking into account the main technical practices and the 

most common plant varieties encountered in Europe. It 

has been already used combined with FORMOSAT-2 

data to map grassland productions in the Southeastern 

France [4] and with SPOT-VEGETATION images at 

France scale to improve pasture production diagnostic 



 

in the ISOP French system [5]. The Take 5 experiment
1
 

initiated by CNES and ESA
2
 with the depointing of 

SPOT 4 in 2013 and SPOT 5 in 2015 has resulted in 

large time series of multi spectral images acquired at 

high resolution (described below) over the Camargue 

area. The aim of this study was then to evaluate the 

potentialities of such data close to Sentinel 2 

configuration for rice monitoring and agricultural 

practice detection. 

 

2 DATA SET AND METHODS USED 

 

2.1 Data set description 

 

The Take 5 experiment (described in 

http://www.cesbio.ups-tlse.fr/multitemp/?cat=72) was 

initiated by the CNES team (Toulouse) to simulate the 

image time series of Sentinel 2 before the launch of this 

last sensor, with a time revisit of 5 days for two periods: 

in 2013, from February to mid June with SPOT4 (20 m 

for the spatial resolution), and in 2015, from April to 

September in 2015 with SPOT5 (resolution 10m). 

Numerous scenes were acquired over 150 sites selected 

according to submitted projects. This dataset has been 

completed over our study area by Landsat data (LC8) 

downloaded from http://earthexplorer.usgs.gov/. All 

images were georeferenced and corrected from 

atmospheric effects according to the method described 

by [6] based on the use of multi-temporal images. 12 

cloud free SPOT4 and 8 LC8 images were acquired 

over the Camargue area in 2013; 16 SPOT5 and 8 LC8 

images in 2015. Landsat images were also used in 2011 

(7 images) and in 2014 (11) in order to analyze the 

evolution of the rice surfaces for the last years. 

Additionally to this dataset, an accurate landuse map 

established by the natural reserve of Camargue has been 

used, including 40 classes, and a vector layer of the plot 

boundaries (figure 1) 

 

 
Figure 1. Location of the study area with the footprints 

of the remote sensing images used (SPOT4 in red, LC8 

in green and SPOT 5 blue) and the vector layer of the 

plot boundaries. 

                                                           
1
 http://www.cesbio.ups-tlse.fr/multitemp/?p=5784 

2 CNES : Centre d’étude Spatiale, ESA : European Spatial Agency 

 

For the calibration of the crop model, we have used 

parameters provided by the dataset of F Ruget (INRA 

Avignon) and UMR innovation (INRA Montpellier) 

collected over more than one hundred rice fields the last 

years. Surveys were conducted with a few farmers in 

2015, in order to know the key dates of agricultural 

practices: flooding, sowing and harvest dates, variety, 

nitrogen quantity brought and productions obtained. 

 

2.2 Methods 

 

- 1) The first stage of image processing consisted in 

computing vegetation index (NDVI) and analyzing the 

temporal profile of each rice field in order to identify 

some practices (flooding, sowing dates). Supervised 

classifications were elaborated each year considering 

several dates and all the spectral bands to better 

distinguish the different crops. Ground surveys 

performed were used to define reference classes. -2) 

Leaf Area Index (LAI), which is a key biophysical 

variable involved in the main processes that drive soil–

plant–atmosphere exchanges and biomass accumulation, 

was then computed according to two methods described 

in [7]. The first method was based on the use of an 

empirical relationship with NDVI ‘described in [7], and 

the second one, relied on the combination of a radiative 

transfer model with a neural network [10]. Temporal 

interpolation was made using a non - linear fitting with 

5 parameters to get daily LAI. -3) The third step was the 

use of the STICS crop model according to two strategies 

to get different information on rice crops. STICS runs at 

a daily time step with inputs describing climate, soil, 

plant and crop system. This model can either simulate 

LAI evolution varying according to water and nitrogen 

stress, or use daily values of LAI provided from remote 

sensing (RS) data. The quantities/doses of water and 

fertilizers can be also imposed as an input variable or 

calculated by the model. In a first stage, daily LAI 

interpolated from RS data were used as STICS inputs to 

quantify the impact of LAI variability on rice 

production at farm scale (all the other parameters were 

the same for the various study cases analyzed). For the 

second stage, punctual LAI values were assimilated in 

STICS according to the simplex optimization method to 

retrieve the sowing dates. In order to take into account 

the variability of farming systems encountered in 

Camargue area, we chose seven different types of crop 

systems defined by Delmotte [1,12]. Some farmers 

practiced rotation each year and sowed cereals after 

rice, while others made only rice. Few of them were 

organic farms beside others which used large quantity of 

herbicides and fertilizers. Performances of the crop 

model were evaluated comparing the outputs to the 

surveys made at farm scale. 

 

http://www.cesbio.ups-tlse.fr/multitemp/?cat=72
http://earthexplorer.usgs.gov/


 

3 RESULTS 

 
3.1 Evolution of Rice surface since 2011 

 

Landuse classifications  derived from RS data allowed a 

first analysis of the evolution of the rice surfaces since 

2011. A decrease trend was observed on all the farms 

studied as shown in figure 2. For this example, in 2011 

all the fields (32 plots) were in rice (in blue on the first 

color composite on 22/5/2011), in 2013, 14 fields 

became cereals fields (in red on 14/5/2013), in 2014:6 

fields were cereals fields and in 2015, 10 from 32. A 

decrease of rice surface was also observed of around 

30% on the other farms studied from 2011 to 2015. 

 

 
 

Figure 2. Rice fields at farm scale at different dates in 

May. (In red cereals, in blue rice, color composite 

obtained with green red and near-infrared spectral 

bands of SPOT4, SPOT5 and LC8) 

 

There are various factors explaining this evolution, 

among them, the climatic conditions and the market 

variations are those mostly cited [1]. One of the task of 

the ScenaRice project (coordinated by UMR Innovation 

from Montpellier, France  see http://umr-

innovation.cirad.fr/projets/evaluation-integree-de-

systemes-de-production-rizicoles-durables.-exploration-

de-scenarios-probables-plausibles-et-possibles) is 

currently working on this topic among others.  

 

3.2. Identification of some agricultural practices 

 

The high spatial and temporal resolution of Take5 data 

allowed detecting the different practices before flooding 

such as the first labor to prepare the soil and the second 

sowing made by some farmers to prevent weeds as 

displayed in figure 3.  

 

 

Figure 3. Color composites using Green, Red, and 

Near-infrared bands of SPOT4 over a farm of the 

Camargue region from February to June  2013. (In red 

cereals, in brown rice fields) 

 

The plots at the center of the farm appeared darker than 

the others at 13/2/2013. They were plowed later than the 

other surrounding plots. The surface roughness and soil 

moisture of these plots conducted to low reflectances, 

compared to the fields around which appeared with 

higher reflectance values (light brown later  the 23/2 

and 15/3). The last fields were plowed and sown earlier.  

This time variability at farm scale induced a significant 

variability for the rice development (in the last image 

13/6/2013, the young rice plants appear in red on the 

boundary of the agricultural domain).  

 

The Figure 4 shows a comparison of the mean temporal 

NDVI profiles obtained for different farm types. The 

flooding can be well identified by the lowest values as 

already noticed by [8]. In 2013, different minimum 

peaks were observed. They corresponded to a second 

sowing. The climatic conditions were very bad in spring 

for soil preparation with a lot of rain in April and May. 

All farmers have not the same practices. Some farmers 

have chosen to plant again some plots because of bad 

seedlings and thus a second sowing can be identified 

from NDVI profiles. 

   

 
Figure 4. Comparison of temporal NDVI profiles for 3 

farm types (Types 1 and 4 corresponded to 2 farms (36 

and 32 plots respectively) partially organic with 70% 

rice, type 2: farm with breading and 35% rice (28 

plots), Type 4: breading & 86 plots mixed cereal and 

rice).  

 

A comparison of the NDVI profiles obtained for the 

different studied years (Figure 5) showed clearly that 

the high temporal revisit (in 2013 Take 5 experiment 

with an image every 5 days from Februry to June) 

allowed to detect more accurately the different 

agricultural practices performed at the beginning of the 

rice cycle. In 2011 and 2014 only Landsat data were 

available (with 8 and 9 images per year according to the 

cloud frequency). The time revisit appears not sufficient 

to capture these agricultural practices. 

http://umr-innovation.cirad.fr/projets/evaluation-integree-de-systemes-de-production-rizicoles-durables.-exploration-de-scenarios-probables-plausibles-et-possibles
http://umr-innovation.cirad.fr/projets/evaluation-integree-de-systemes-de-production-rizicoles-durables.-exploration-de-scenarios-probables-plausibles-et-possibles
http://umr-innovation.cirad.fr/projets/evaluation-integree-de-systemes-de-production-rizicoles-durables.-exploration-de-scenarios-probables-plausibles-et-possibles
http://umr-innovation.cirad.fr/projets/evaluation-integree-de-systemes-de-production-rizicoles-durables.-exploration-de-scenarios-probables-plausibles-et-possibles
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Figure 5. Comparison of NDVI profiles obtained for a 

rice field of the farm type 2 (îlot 1330) for the 3 years 

studied.  

 

 

3.3 LAI analysis 

 

A large variability of LAI has been observed at farm 

scale (Figure 6a). This variability can be due to different 

factors: differences in soils, fertilization, variety… but 

also due to variation in the sowing and flooding dates as 

shown in figure 6b. On this example, it was more the 

sowing date than the other factors which explained the 

two LAI groups observed in figure 6a. On the figure 6b 

obtained from ground surveys, we saw clearly two 

groups for the sowing: the first group at left was sown 

later on 10/5 when the other plots were already sown a 

week earlier around 2-3/5. A map of the maximum 

growth can be derived from the LAI profile 

corresponding to the inflexion point in the first period 

(figure 6c). Other heterogeneities appear which can be 

due to the soil or irrigation variations. 

 

 
Figure 6.a) LAI profiles interpolated using a non – 

linear fitting with 5 parameters, for each plot of the 

farm displayed in figure 1.  

 

 

 

 
 

b) Map of rice varieties encountered on the farm with 

the indications of the sowing and flooding dates in 2011 

(obtained from surveys). c) Map of the date 

corresponding to the maximum growth obtained from 

the extraction of the inflexion point on the LAI profile at 

the beginning of the season.    

 

 

3.4 Impact of LAI variability on rice production 

 

Figure 7 show the production variability obtained for 

the same studied farm in figure 6 considering LAI 

derived from remote sensing data as forcing inputs in 

the STICS crop model. The rice variety and the soil 

parameters were identical for all the plots. A variability 

from 2 to 4 ton/ha was observed due to the LAI 

differences.  The variability is much wider in 2013 than 

in 2011 and 2014, due to the bad climatic conditions 

encountered in 2013 at the beginning of the season as 

explained before.  

 

 
Figure 7. Variability of productions obtained at farm 

scale for the three years studied (expressed in dry 

matter simulated by the crop model using LAI derived 

from RS as input data).  



 

Comparisons of some key parameters on phenology 

stages or production between years and farms represent 

useful information which can be derived from images 

and help to refine the crop system classification (Figure 

7). 

 

Figure 8. Boxplot obtained for the production of dry 

matter simulated by STICS for three different farm types 

in 2013 (see figure 4 caption for the main 

characteristics of the types). 

3.5 Retrieval of the sowing date by inversion 

The optimization has been done to obtain the sowing 

date assimilating the LAI observations for few study 

cases in 2013. Simulations gave a large variability from 

day of year DOY 113 (23/4/2013) to DOY 148 (28/5), 

with more than 75% of the plots between 122-137. 

Ground surveys gave a range between 112 and 130. 

Other simulations are necessary for different farms and 

years to test the method robustness. This work is 

currently underway.  

4. CONCLUSION 

The methods proposed here can be applied at different 

crops in various contexts and confirm the potential of 

remote sensing acquired at fine resolution such as the 

Sentinel2 system for agriculture applications and 

environment monitoring.  

Acknowledgment  

This study was supported by different projects: ScenaRice 

funded by Agropolis Foundation and TOSCA projects funded 

by CNES. Thanks to the French Rice center (Cyrille Thomas, 

Arles) and to the farmers who kindly have answered to our 

surveys. 

References 
[1] S. Delmotte, et al., "On farm assessment of rice 

yield variability and productivity gaps between 

organic and conventional cropping systems 

under Mediterranean climate," European 

Journal of Agronomy, vol. 35, pp. 223-236, 

Nov 2011 

[2]  N. Brisson, et al., "An overview of the crop model 

STICS," European Journal of Agronomy, vol. 

18, pp. 309-332, 2003. 

[3] R. Faivre, et al., "Spatialising crop models," 

Agronomie, vol. 24, pp. 205-217, May-Jun 

2004. 

[4]   D. Courault, et al., "Combined use of 

FORMOSAT-2 images with a crop model for 

biomass and water monitoring of permanent 

grassland in Mediterranean region," Hydrology 

and Earth System Sciences, vol. 14, pp. 1731-

1744, 2010  

[5] C. Di Bella, et al., "Use of SPOT4-VEGETATION 

satellite data to improve pasture production 

simulated by STICS included in the ISOP 

French system," Agronomie, vol. 24, pp. 437-

444, 2004. 

[6] O. Hagolle, et al., "A multi-temporal method for 

cloud detection, applied to FORMOSAT-2, 

VENµS, LANDSAT and SENTINEL-2 

images," Remote Sensing of Environment, vol. 

114, pp. 1747-1755, Aug 16 2010. 

[7] A. Bsaibes, et al., "Albedo and LAI estimates from 

FORMOSAT-2 data for crop monitoring," 

Remote Sensing of Environment, vol. 113, pp. 

716-729, 2009. 

[8] M. Boschetti, et al., "Monitoring paddy rice crops 

through remote sensing: productivity 

estimation by light use efficiency model," in 

Remote Sensing for Agriculture, Ecosystems, 

and Hydrology Vi. vol. 5568, M. Owe, et al., 

Eds., ed, 2004, pp. 46-56. 

[9] M. Launay and M. Guerif, "Assimilating remote 

sensing data into a crop model to improve 

predictive performance for spatial 

applications," Agriculture Ecosystems & 

Environment, vol. 111, pp. 321-339, 2005 

[10] F. Baret, et al., "LAI, fAPAR and fCover 

CYCLOPES global products derived from 

VEGETATION - Part 1: Principles of the 

algorithm," Remote Sensing of Environment, 

vol. 110, pp. 275-286, 2007. 

[11] S. Delmotte S, 2011 Evaluation participative de 

scénarios : quelles perspectives pour les 

systèmes agricoles camarguais ? Thèse 

SupAgro Montpellier, 376p. 

 
 

 


