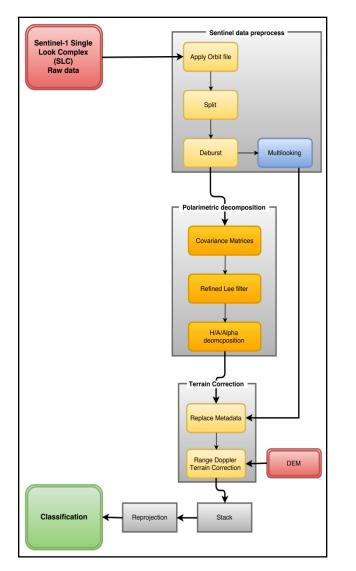


Applying radar and optical images to create Copernicus High Resolution layers: case studies in Hungary

György Surek, Gizella Nádor, Zoltán Friedl, Bálint Gyimesi, Mátyás Rada, Dávid Ákos Gera, Irén Hubik, Anikó Rotterné Kulcsár, Cecília Török

Institute of Geodesy Cartography and Remote Sensing, Hungary

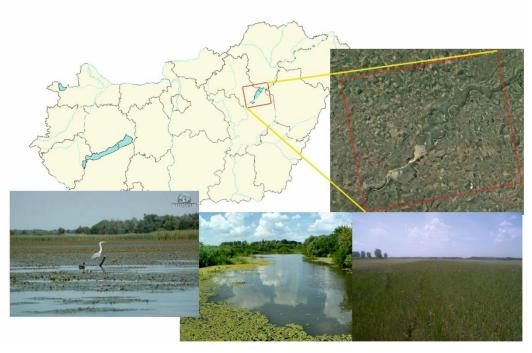


Objectives

SAR data can bring high added value to optical data in Earth Observation,
requires methodological adaptation (different nature of SAR compared to optical data),
It requires the analysis of SAR-based imagery within the COPERNICUS land context,
preparation of case studies to demonstrate the benefits of the use of SAR.

Methodology

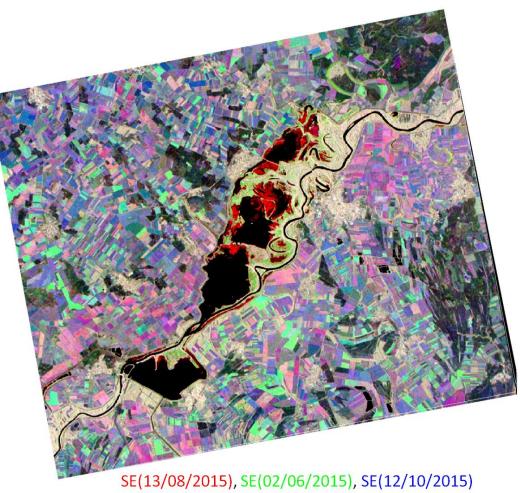
SLC processing chain


➢Preprocess

≻Polarimetric decomposition

➤Terrain correction

- ≻Stack layers
- ➢Reprojection
- ≻Classification



The Lake Tisza site is situated on the Great Hungarian Plain in the Eastern part of Hungary the largest artificial lake in the country. The lake and its surroundings is merely formed by the river Tisza. Lake Tisza study area is a mosaic of landscape patches, consisting of flatlands, a variety of large open water surfaces and shallow water, countless dead-end channels, scattered by several small islands, sand dunes and narrow active floodplains.

Multitemporal composite of Shannon Entropy derived from SAR data

SE: Shannon entropy

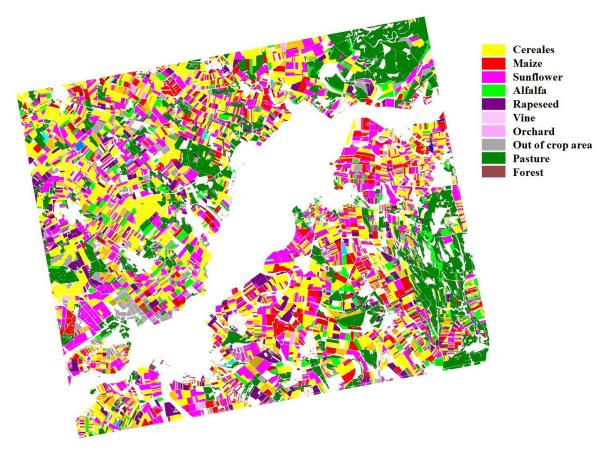
Radar time series

Time series of SENTINEL-1 SLC (ascending, VV+VH) images

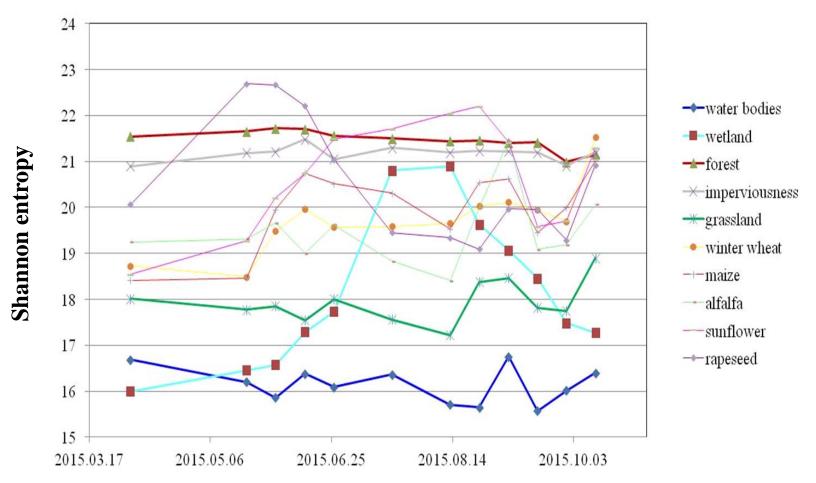
acquisition date	bands used			
03/04/2015	SE, SE _i			
21/05/2015	SE, SE _i			
02/06/2015	SE, SE _i			
14/06/2015	SE, SE _i			
26/06/2015	SE, SE _i			
20/07/2015	SE, SE _i			
13/08/2015	SE, SE _i			
25/08/2015	SE, SE _i			
06/09/2015	SE, SE _i			
18/09/2015	SE, SE _i			
30/09/2015	SE, SE _i			
12/10/2015	SE, SE _i			

SE: Shannon entropy Se_i: i component of SE

Optical time series

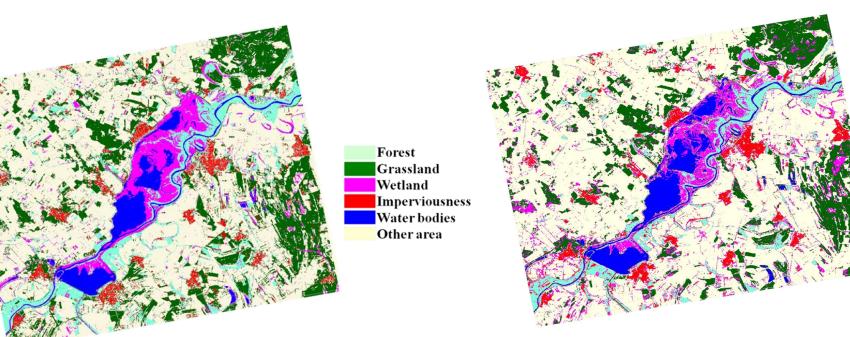

Time series of Landsat TM8 images

Aquisition date	bands used			
2015.05.18	Red, NIR,SWIR1			
2015.06.03	Red, NIR,SWIR1			
2015.07.05	Red, NIR,SWIR1			
2015.07.21	Red, NIR,SWIR1			
2015.08.06	Red, NIR,SWIR1			
2015.09.23	Red, NIR,SWIR1			


Reference data for Lake Tisza site

source: anonymized agriculture subsidy claim database

Average temporal development of Shannon entropy for different categories



Lake Tisza site Classified maps

Derived from Optical(6)

Derived from fusion of Radar(12) & Optical(1)

Lake Tisza site Comparison of optical and radar class-maps

	grassland	forest	water	wetland	imperv.	other	total
grassland	15925	185	187	686	403	2949	20335
forest	208	6682	1	228	39	434	7592
water	0	11	4948	1008	0	10	5977
wetland	1502	802	139	3753	141	1323	7661
imperv.	330	506	0	134	2283	1649	4903
other	6461	2581	26	2088	1897	64039	77091
total	24427	10767	5300	7897	4763	70404	$\boldsymbol{123558}_{\scriptscriptstyle \Box}$

overall accuracy: 79%

Lake Balaton site

The Lake Balaton study site separated by Lake Balaton, a shallow lake located in the western part of Hungary. The northern region is not a typical agricultural area due to the *unfavorable* agro-ecological *conditions* excluding viniculture or reed growing. Unlike the southern part of the scene which has a rather agriculturally dominant landscape.

The different landscape structures, relief and the vegetation cover result in different land cover, land use and land management. The separation of homogeneous sub-regions in the area implies different approaches.

Lake Balaton site

Multitemporal composite of Shannon Entropy derived from SAR data

SE(01/05/2015), SE(12/07/2015), SE(10/09/2015) SE: Shannon entropy

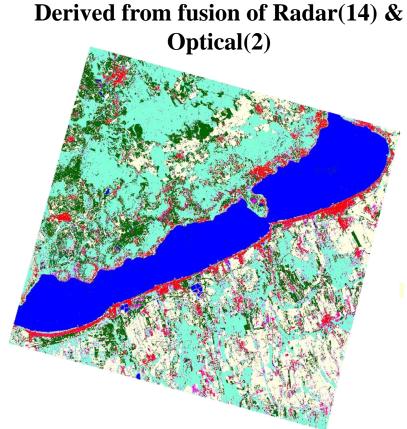
Lake Balaton site

Radar time series

Optical time series

Time series of SENTINEL-1 SLC (descending, VV+VH) images

acquisition date	bands used
02/03/2015	SE, σ ₀
14/03/2015	SE, σ ₀
26/03/2015	SE, σ ₀
01/05/2015	SE, σ ₀
13/05/2015	SE, σ ₀
25/05/2015	SE, σ ₀
06/06/2015	SE, σ ₀
18/06/2015	SE, σ ₀
30/06/2015	SE, σ ₀
12/07/2015	SE, σ ₀
24/07/2015	SE, σ ₀
29/08/2015	SE, σ ₀
10/09/2015	SE, σ ₀
04/10/2015	SE, σ ₀


Acquisition date	satellite image	bands used
2015.04.13	SPOT5	Red, NIR,SWIR1
2015.04.23	SPOT5	Red, NIR,SWIR1
2015.06.12	SPOT5	Red, NIR,SWIR1
2015.07.22	SPOT5	Red, NIR,SWIR1
2015.08.31	SPOT5	Red, NIR,SWIR1
2015.09.21	Landsat TM8	Red, NIR,SWIR1
2015.11.01	Landsat TM8	Red, NIR,SWIR1

SPOT5 scenes from SPOT5-take5

Lake Balaton site Classified maps

Derived from Optical(7) Forest Grassland Wetland Imperviousness Water bodies Other area

Lake Balaton site Comparison of optical and radar class-maps

	grassland	forest	water	wetland	imperv.	other	total
grassland	26581	2787	408	872	1568	13311	45527
forest	12237	73666	13	2896	2133	5356	96300
water	5	3	54734	45	4	3	54794
wetland	3916	2800	94	1420	1270	3532	13030
imperv.	3930	1181	29	486	6143	5037	16806
other	14524	1996	232	1106	1753	54643	74253
total	61266	82432	55509	6824	12871	81881	300711

overall accuracy: 72%

Conclusion

These two case studies also confirmed that the radar time series are at least as accurate as the optical in HRL generation.

>It was a simple classification, using a minimum number of descriptors per dates.

> An important result of the study is that higher accuracy can be achieved if the area is divided into homogeneous zones like north and south part of the Balaton site.

