Spaceborne hyperspectral data for mapping and monitoring biodiversity in the Brazilian Cerrado

Pedro J. Leitão, Marcel Schwieder, José R. Pinto, Fernando Pedroni, Maryland Sanchez, **Mercedes Bustamante & Patrick Hostert**

Background

Motivation

- · Earth observation data have great potential for characterising biodiversity patterns
- · Hyperspectral data collected at repeated times are suitable for characterising complex ecological systems
- The Brazilian Cerrado is highly dynamic, heterogeneous and largely understudied, although it constitutes a global biodiversity hotspot

Data Analysis

Study area & data

- Two study sites in protected areas of the Cerrado (Figure 1)
- Field data:
 - Allometric measures and species identification
 - · Above-ground carbon stock calculated
 - · Species data aggregated to the family level
 - Pixels with over 75% samping coverage: 70 (PESA) and 49 (PETR)

- Remote sensing data:
 - Time series of Landsat data: 112 time steps
 - Tasseled Cap Greenness, Wetness and Brightness calculated · Phenological metrics derived (nine
 - metrics per index)
 - Time series of EO-1 Hyperion data: eight (PESA) and five (PETR) time steps
 - . Band subset stacked (83 bands per scene)

Results & Discussion

Model Results

	# of time steps	1	2	3	4	5	6	7	8
Study site	# of variables	83 (+27)	166 (+27)	249 (+27)	332 (+27)	415 (+27)	498 (+27)	581 (+27)	664 (+27)
PESA	TS	66.737	56.176	58.171	64.851	69.375	63.741	72.128	61.190
	TS + P	63.923	60.424	56.089	58.984	64.648	68.743	62.771	69.656
PETR	TS	1.113	18.114	12.990	11.974	9.636			
	TS + P	16.453	2.873	17.526	17.368	10.468		-	-

Table 1 - SGDM cross-validated model performances (r²) for both study sites: PESA and PETR. TS refers to the EO1 Hyperion time series and TS+P refers to this time series combined with Landsat based phenological metrics.

- Results varied greatly between study sites:
 - Model performances (r²) in PESA varied between 56.2 and 72.1% and in PETR between 1.1 and 18.1% (Table 1)
 - Increasing Hyperion time series generally delivered improved model performances for PESA but not so for PETR (Figure 3)
- Phenological information added to Hyperion time series did not consistently improved model performances
 - Best performing models do not include phenology

Acknowledgements

ComCerrado

h is part of the EnMAP Core S entre (DLR) – Project Managen (BMWi; grant no. 50EE0949), scientific network. The authors i ut with the pre-procession of the

Objectives

- · Use time series of hyperspectral (EO-1 Hyperion) and multispectral (Landsat) data to monitor spatial transitions in woody plant communities transitions
- Assess trade-offs between spectral and temporal domains of remote sensing for describing spatial biodiversity patterns

Methods

- Model tree community transitions with Sparse Generalized Dissimilarity Modelling (SGDM; Leitão et al., 2015)
- Carbon stock as proxy for abundance
- · SGDM built on:
 - Incremental time-series of EO-1 Hyperion data (TS)
 - Incremental time-series of EO-1 Hyperion data combined with Landsat-based phenological metrics (TS+P)
- Comparison of model performances (LOO cross validation) and assessment of trade-offs (temporal vs. spectral)

ation of the SGDM (Leitão et al., 2015)

Figure 2 – Scatterplot of the predicted vs. obstans and no phenology for PESA; and sever

Discussion

- Time series of spaceborne hyperspectral imagery are suitable for systematically monitor changes in plant community patterns (in space and time)
- · No need for dense time series, probably depending on time of acquisition
- · Further studies are needed to assess complementary or synergetic integration with phenological information derived from wall-to-wall multispectral data

Reference

Leitão, P.J., Schwieder, M., Suess, S., Catry, I., Milton, E.J., Moreira, F., Osborne, P.E., Pinto, M.J., van der Linden, S., Hostert, P. 2015. Mapping beta diversity from space: Sparse Generalised Dissimilarity Modelling (SGDM) for analysing high-dimensional data. *Methods in Ecology and Evolution*, **6**: 764-771. doi: 10.1111/2041-210X.12378

Download poster

Contact information Pedro J. Leitão

p.leitao@geo.hu-berlin.de Phone: +49.30.2093.4889 Geography Department | Geomatics Lab Humboldt-Universität zu Berlin

www.hu-geomatics.de https://twitter.com/steppebird