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INTRODUCTION

 Solar, geomagnetic, gravitational and seismic activities cause variations in the electron
distribution of the atmosphere.

 The number of electrons within a vertical column of 1 𝑚2 cross section, which is called
as Total Electron Content (TEC) can be measured accurately by using the phase
difference between transmitted satellite positioning signals such as in the Global
Positioning System (GPS) [2].

 This study is concerned with investigating TEC to detect seismo-ionospheric anomalous
variations induced by earthquakes.

 TEC estimated from GPS receivers is used to classify the regional and local variability
that differs from global activity along with solar and geomagnetic indices.

 For the automated classification of the regional disturbances, a classification technique
based on a robust machine learning technique that have found wide spread use,
Support Vector Machine (SVM) is used.

 Performance of the developed classification technique is demonstrated for midlatitude
ionosphere over Anatolia using TEC estimates generated from the GPS data for solar
maximum year of 2011.

SUPPORT VECTOR MACHINES

RESULTS

CONCLUSION

 In this study, SVMs are used for the automated classification of the regional
disturbances.

 Performance of the developed classification technique is demonstrated for
midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS
data for solar maximum year of 2011.

 To discriminate the seismo-ionospheric perturbations from geomagnetic
disturbances, the geomagnetic and solar indices (Dst and Kp indices) have been
used.

 As a result of implementing the developed classification technique to the GIM TEC
data, it is shown that SVM can be a suitable learning method to detect the
anomalies in Total Electron Content (TEC) variations.
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 Support vector machines (SVMs) are supervised learning models used for classification
in machine learning, with associated learning algorithms that analyze data and
recognize patterns.

 The aim of an SVM model is to represent the samples as points in space, mapped so
that the samples of the separate classes are distinguished by an apparent space that is
as large as possible [1].

 After the mapping of the new samples, they are predicted to be a part of a class
according to the side of the space that they correspond.

LINEAR SVM
 Given a set of 𝑛 points which is the training data of the form 

where each 𝒙𝒎 is a 𝑝-dimensional feature vector and 𝑦𝑚 shows to which class the point
𝒙𝒎 belongs with a value either 1 or -1.

 The aim is to determine maximum-margin hyperplane which separates points having
𝑦𝑚 = 1 from those having 𝑦𝑚 = −1 .

 Every hyperplane can be identified by using the set of points 𝒙 which satisfies:

where 𝒘 states the vector which is normal to the hyperplane.

 For the cases where training data is linearly separable, two hyperplanes which
separate the data can be chosen as shown below and the margin between these two
hyperplanes can be maximized [2].

 Since the interval between these two hyperplanes

is
2

||𝑤||2
, the aim is to minimize ||𝑤||2 .

 The optimization problem becomes:

minimize ||𝑤||2 subject to:

Figure 1: Margins and maximum-margin hyperplane
for an SVM trained with samples from two classes.
Support vectors are the samples on the margin.

 Non-negative slack variable, 𝜀𝑚 , that measures the misclassification level of the data
𝒙𝒎 is presented by soft margin method [3].

 Objective function is then increased by a function which penalizes non-zero 𝜀𝑚 , and
the optimization becomes a tradeoff between a small error penalty and a large
margin. The optimization problem in case of a linear penalty function is:

subject to

 By using Lagrange multipliers, constraint shown in the equation above together with
the objective of minimizing ||𝑤||2 can be done by solving the following problem [4].

METHODOLOGY

 TEC variations have been analyzed using Global Ionospheric Map (GIM) data provided
by the NASA Jet Propulsion Laboratory (JPL).

 GIM is constructed from a 5° × 2.5° (longitude, latitude) grid with a time resolution of
2 hours.

 To discriminate the seismo-ionospheric perturbations from geomagnetic disturbances,
the geomagnetic and solar indices (Dst and Kp indices) have been used.

 In cases where the data is linearly separable, SVMs operating with linear kernel
functions are used to map the training data into kernel space.

 For the data which are not linearly separable, SVMs operating with radial basis
function (RBF) kernel are employed.

 To obtain satisfactory predictive accuracy, the parameters of linear and RBF kernels are
tuned by performing 10-fold cross-validation.

 In each cross validation fold, statistical measures of the performance of SVM classifier,
such as detection rate, false alarm rate, specificity, accuracy, positive predictive value
and negative predictive value are calculated.

 Performance results from the folds are then averaged to produce a single estimation
which enables to choose the classifier that gives the best performance results.

SVM Classifier Performance Results (%)

Earthquake E1 E2 E3 E4 E5 E6 E7 E8

Detection Rate (PD) 100.00 92.15 93.25 90.43 98.56 88.52 77.64 85.27

False Alarm Rate (PFA) 0 5.36 4.74 7.21 0 5.36 11.02 8.48

Specificity 100.00 87.42 93.25 92.15 100.00 86.27 79.45 84.28

Accuracy 100.00 93.26 91.57 89.37 95.39 89.62 76.39 86.39

Positive Predictive Value 100.00 86.37 93.52 81.63 98.12 79.42 73.25 76.28

Negative Predictive Value 100.00 98.24 95.26 91.46 100.00 86.26 74.29 82.27

AUC (ROC) 100.00 99.36 98.32 93.76 98.23 90.43 80.12 87.31

AUC (PR) 100.00 96.43 97.42 94.07 97.35 89.20 77.94 85.62

Average Cross-Validation Error 0 4.68 3.92 4.85 1.35 7.36 11.38 9.47

Table 1: SVM Classifier Performance Results (%) for Optimum Linear Kernel Parameters and Joint
Features Total Electron Content (TEC) And Kp Index.

SVM Classifier Performance Results (%)

Earthquake E1 E2 E3 E4 E5 E6 E7 E8

Detection Rate (PD) 100.00 94.56 95.48 92.41 100.00 91.54 81.17 84.32

False Alarm Rate (PFA) 0 2.04 2.47 5.37 0 3.52 10.13 9.46

Specificity 100.00 90.76 96.41 95.36 100.00 88.63 82.87 85.23

Accuracy 100.00 92.75 94.12 91.10 97.13 90.48 80.31 85.35

Positive Predictive Value 100.00 89.42 92.34 84.58 98.76 82.65 76.18 80.14

Negative Predictive Value 100.00 100.00 95.03 90.74 100.00 87.48 79.71 84.46

AUC (ROC) 100.00 100.00 100.00 95.47 100.00 91.35 83.16 89.32

AUC (PR) 100.00 96.26 97.42 94.56 98.83 92.63 81.74 87.34

Average Cross-Validation Error 0 3.12 3.25 4.37 0.61 5.74 10.48 8.13

Table 2: SVM Classifier Performance Results (%) For Optimum Linear Kernel Parameters And Joint
Features Total Electron Content (TEC) And Dst Index.

Figure 2: SVM classification with linear kernel, optimum kernel
parameters and joint features Total Electron Content and Dst
Index.

Figure 3: SVM classification with linear kernel, optimum
kernel parameters and joint features Total Electron Content
and Kp Index.

(See QR code link for earthquake information table )

Figures 2 and 3 shows, SVM classification results for Tabanlı, Van earthquake (E1) by using
joint features TEC data and Dst or Kp indices, respectively.

http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/index.html
http://wdc.kugi.kyoto-u.ac.jp/kp/index.html

