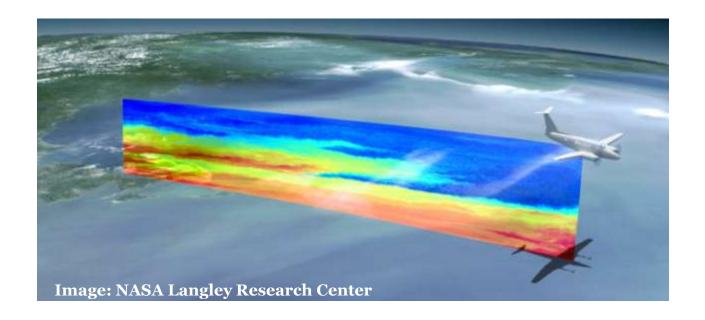
MULTIPLY: Development of a European HSRL airborne facility

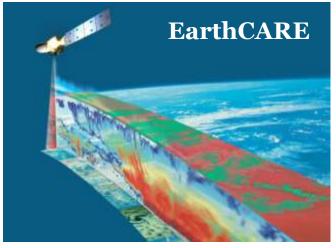
Ioannis Binietoglou^{1,2}, Vassilis Amiridis², Livio Belegante¹, Andreea Boscornea³, Montserrat Costa Surós ⁴, Panagiotis Kokkalis², Holger Linne⁵, Doina Nicolae¹, Ilya Serikov⁵, Iwona Stachlewska⁴, Sorin-Nicolae Vajaiac³

- ¹National Institute for Research and Development in Optoelectronics, Romania
- ² Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Greece;
- ³ National Institute for Aerospace Research "Elie Carafoli" (INCAS), Romania;
- $^{\rm 4}$ Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland;
- ⁵ Max Planck Institute for Meteorology, Hamburg, Germany



The MULTIPLY project in a nutshell

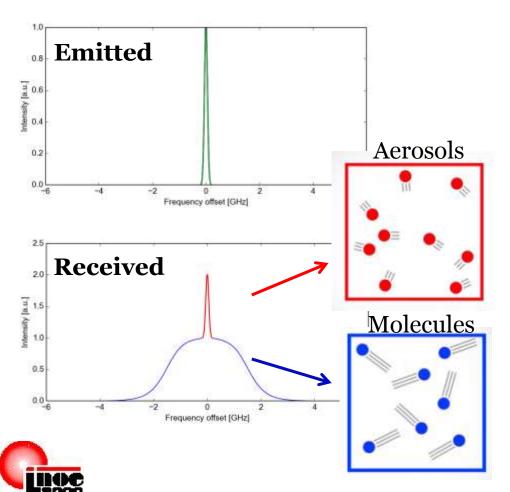
- An airborne High Spectral Resolution Lidar (HSRL).
- It will measure aerosol optical properties at 3 wavelengths (355, 532, 1064nm).
- Main product will be aerosol extinction, backscatter, and depolarization profiles.
- Developed by a consortium of institutes in: Romania, Germany, Poland, Greece, and Netherlands.

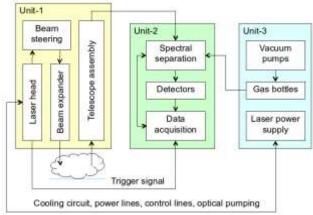


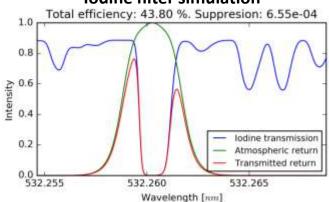
ESA aerosol missions

- ESA is planning a number for aerosol monitoring missions.
- ESA's active remote sensing missions: EarthCARE, ADM-Aeolus.
- Several Sentinels will also provide aerosols products.

There is a need for detailed validation of aerosol products, and evaluation of their uncertainties.




Why High Spectral Resolution?

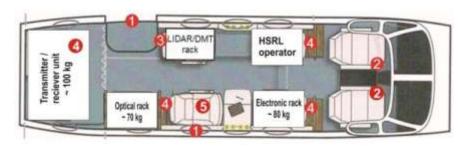

- Laser light is monochromatic.
- Light scattered in the atmosphere is broadened by the movement of aerosols and molecules.
- Aerosol move slower than molecules -> different spectrum.
- The difference is very small (~1pm) so we need high spectral resolution to detect this.
- If we do, we can separate aerosol and molecular scattering, and gain detailed information on aerosol properties.

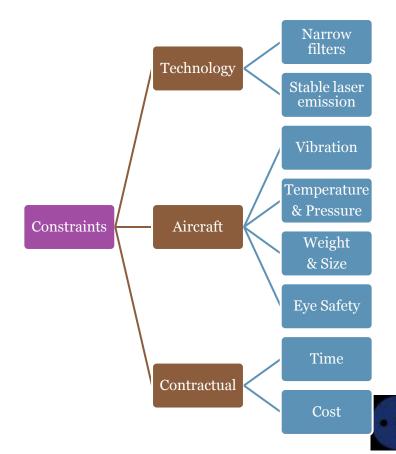
How it works

System schematics

lodine filter simulation

Simulation based on Forkey et al., Applied Optics, 1997, doi: 10.1364/AO.36.006729


- A laser beam is emitted in the atmosphere.
- Light is scattered on molecules and aerosols.
- A telescopes observes the light that is backscattered towards the system.
- 3 laser wavelengths are emitted and detected in the same time.
- High spectral separation is done with either Fabry-Perot interferometers (355, 1064nm) or Iodine filters (532nm).



Tight project constraints

- Multiply is a challenging project with many constraints.
- For its success, we need to push the state of the art in system design.

Project partners & Responsibilities

MULTIPLY project covers the complete design and development of the system, including hardware design, software development, and testing.

INOE, Romania Coordination, Algorithm & Software, Procurements

Max Planck Institute for Meteorology, Germany Hardware design and development

National Observatory of Athens, Greece Instrument Simulations

University of Warsaw, Poland Testing/Quality assurance

National Institute of Aerospace Research (INCAS), Romania Aircraft requirements, validation

National Aerospace Laboratory, Netherlands Aircraft requirements

