

Intermediate validation of Swarm Level 2 Ionospheric Field Product

SW_OPER_MIO_VALi2C_20131126T000000_20150301T000000_0101

By: DTU

Date: 2016-04-21

Abstract and Conclusion

The processes and tests applied in the intermediate validation of the MIO_SHAi2C product

SW_OPER_MIO_SHAi2C_20131126T000000_20160101T000000_0202

and the conclusions on the product quality drawn here from are described in this document.

This product contains the representation of a model of the magnetic field of Earth's ionosphere ("MIO" part of product name) using spherical harmonic coefficients ("SHA" part of product name). The model is estimated from Swarm and observatory data using the *Comprehensive Inversion* (CI) scheme within the Swarm Level 2 Processing system ("2C" part of product name). Operational Swarm Level 1b data version 0408/0409, covering the period from 2013-11-26 to 2015-12-31 are used for the model estimation and the product is valid over the same period ("20131126T000000_20160101T000000" part of product name). This is version 0202 of the product (last part of product name) indicating a significant change in the Comprehensive Inversion process since the previous release and this is the second, minor version of the product. The format of the product is described in "Product Specification for L2 Products and Auxiliary Products", doc. no. SW-DS-DTU-GS-0001.

The assessment of the SW_OPER_MIO_SHAi2C_20131126T000000_20160101T000000_0202 product show structures in good agreement with ionospheric field models.

The DTU SIL's opinion is that the MIO_SHAi2C product is validated and is therefore suitable for release.

© DTU, DK, 2016. Proprietary and intellectual rights of DTU, DK are involved in the subject-matter of this material and all manufacturing, reproduction, use, disclosure, and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by accepting this material agrees that this material will not be used, copied, or reproduced in whole or in part nor its contents (or any part thereof) revealed in any manner or to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

CM: Page 1 of 16

Table of Contents

1	Int	ermediate Validation Report of MIO_SHAi2C	5
	1.1	Input products and data	5
	1.2	Model Parameterization and Data Selection	5
	1.3	Output Products	5
-	1.4	Validation Results	ε
	1.4.	.1 Equivalent Current Function	ε
	1.4.	.2 Data Statistics	11
-	1.5	Criteria	12
2	Ad	ditional Information	13
2	2.1	Model Configuration and Data Selection Parameters	13
2	2.2	Comments from Scientists in the Loop	14
	2.2.	.1 Derivation of Model	14
	2.2.	.2 Conclusion	14
An	nex .	A Definitions of Tests	15
1	A .1	Mean square vector field difference per spherical harmonic degree	15
1	A.2	Correlation per spherical harmonic degree	15
1	A.3	Visualisation of coefficient differences.	15
1	A.4	Visualisation of spatial differences	16
		Table of Figures	_
		gure 1-1: Equivalent current function, MIO_SHAi2C, Spring	· /
	Fi	gure 1-2: Equivalent current function, MIO_SHAi2C, Summer	7
	Fi	gure 1-3: Equivalent current function, CM4, Spring	8
	Fi	gure 1-4: Equivalent current function, CM4, Summer	8
	Fi	gure 1-5: Equivalent current function, MIO_SHAi2C, Autumn	9

Inter	mediate	valid	lation of S	Swarm	Level 2	Ionos	spheric	Field 1	Produ	ıct
SW_{-}	OPER_	MIO	SHAi2C	20131	126T000	0000_	201601	01T00	0000_	0202

Page 3 of 16

Figure 1-6: Equivalent current function, MIO_SHAi2C, Winter	ç			
Figure 1-7: Equivalent current function, CM4, Autumn	10			
Figure 1-8: Equivalent current function, CM4, Winter	10			
Table of Tables				
Table 1-1: Input products	5			
Table 1-2: Observation Statistics	11			
Table 1-3: Validation criteria	12			
Table 2-1: Model Configuration				

Abbreviations

Acronym	Description
AR-2	Acceptance Review 2
CI	Comprehensive Inversion
L2PS	Level 2 Processing System
MIO	Magnetic Ionospheric field
PDGS	Payload Data Ground Segment
SHA	Spherical Harmonic Analysis
SIL	Scientist in the Loop
STR	Star Tracker
TDS	Test Data Set
VAL	Validation
VFM	Vector Field Magnetometer

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_SHAi2C_20131126T000000_20160101T000000_0202

Page 4 of 16

References

[Sabaka, GJI, 2004] Extending comprehensive models of the Earth's magnetic field with Orsted and CHAMP data; Sabaka, Terence J.; Olsen, Nils; Purucker, Michael E.; in journal: Geophysical Journal International (ISSN: 0956-540X), vol: 159, issue: 2, pages: 521-547, 2004.

[Sabaka, GRL, 2016] Extracting Ocean-Generated Tidal Magnetic Signals from Swarm Data through Satellite Gradiometry; Sabaka, Terence J.; Tyler, Robert H.; Olsen, Nils in journal: Geophysical Research Letters (ISSN: 0094-8276) (DOI: http://dx.doi.org/10.1002/2016GL068180), 2016

1 Intermediate Validation Report of MIO_SHAi2C

1.1 Input products and data

The following products were used as input for the estimation of the MIO_SHAi2C ionospheric field model

Products	Туре	Period	Comment
SW_OPER_Q3D_CI_i200000000T000000_99999999T999999_0101	Q-matrix of Earth's (1_D mantle + oceans)	-	Used for computing induced part of ionospheric field
SW_OPER_AUX_OBS_220130101T000000_20131231T235959_0104 SW_OPER_AUX_OBS_220140101T000000_20141231T235959_0104 SW_OPER_AUX_OBS_220150101T000000_20151231T235959_0104	Observatory hourly mean values	2013-11-23 - 2015-07-28	A total of 121 observatories are included
SW_OPER_AUX_DST_219980101T013000_20150308T233000_0001 SW_OPER_AUX_F10_219980101T000000_20150401T000000_0001 SW_OPER_AUX_KP219990101T023000_20150228T223000_0001	Indices	As indicated by the file names	
SW_OPER_MAGA_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0408 SW_OPER_MAGB_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0408 SW_OPER_MAGC_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_0409	Swarm magnetic data, 1 Hz	2013-11-26 - 2015-12-31	Decimated to 15 second sampling

Table 1-1: Input products

1.2 Model Parameterization and Data Selection

See Section 2.1.

1.3 Output Products

The products of this validation report are:

Swarm Level 2 Magnetic ionospheric field Product:

SW_OPER_MIO_SHAi2C_20131126T000000_20160101T000000_0202

Swarm Level 2 Intermediate Validation Product:

SW_OPER_MIO_VALi2C_20131126T000000_20160101T000000_0202

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_SHAi2C_20131126T000000_20160101T000000_0202

Page 6 of 16

1.4 Validation Results

The tests were conducted between 2016-02-22 and 2016-04-10

The following tests have been applied to the data. See Annex A for general definitions of various tests.

1.4.1 Equivalent Current Function

The figures on the following pages show the equivalent current function of the primary ionospheric currents for the MIO_SHAi2C product and for the CM4 model [Sabaka, GJI, 2004] for four different epochs, for the equinoxes and the solstices. Each plot shows the current system for four different local times, morning (06h), noon, evening (18h), and midnight, with the blue line indicating the magnetic dip equator, which gives an indication of the separation between northern and southern current functions. The currents are shown as isolines with 10 kA separation.

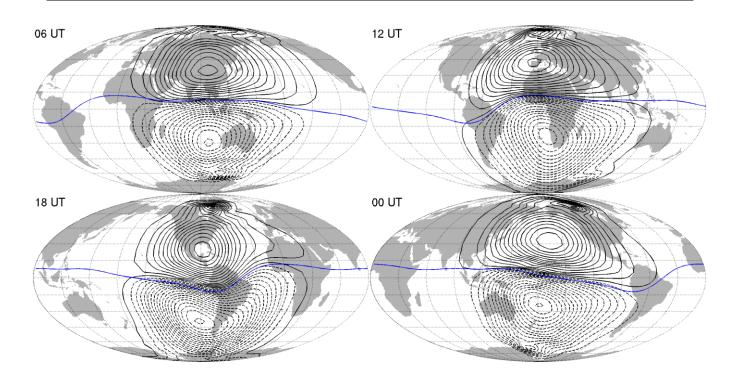


Figure 1-1: Equivalent current function, MIO_SHAi2C, Spring

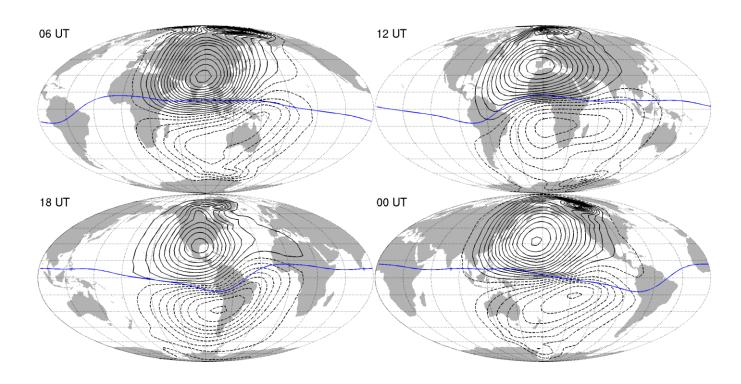


Figure 1-2: Equivalent current function, MIO_SHAi2C, Summer

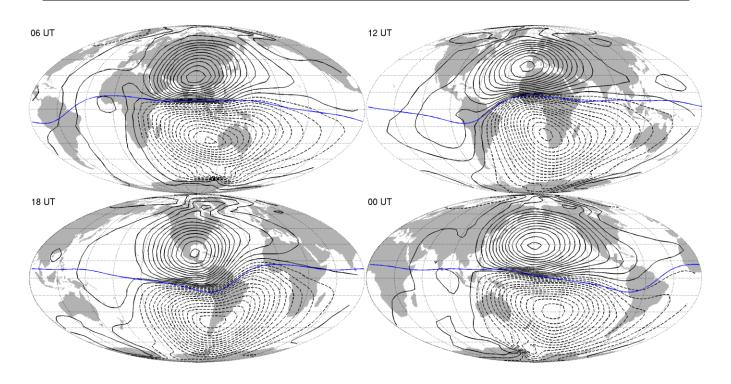


Figure 1-3: Equivalent current function, CM4, Spring

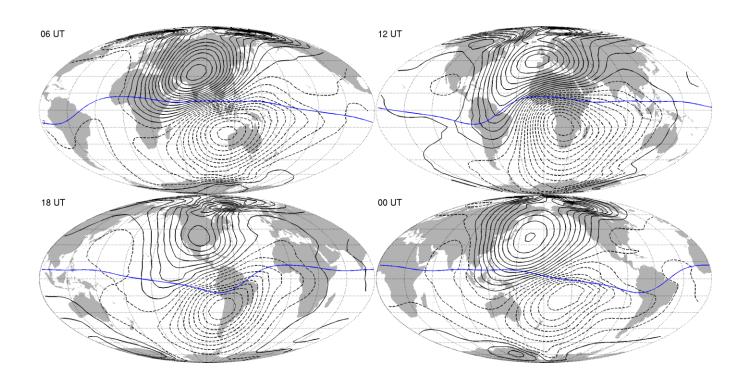


Figure 1-4: Equivalent current function, CM4, Summer

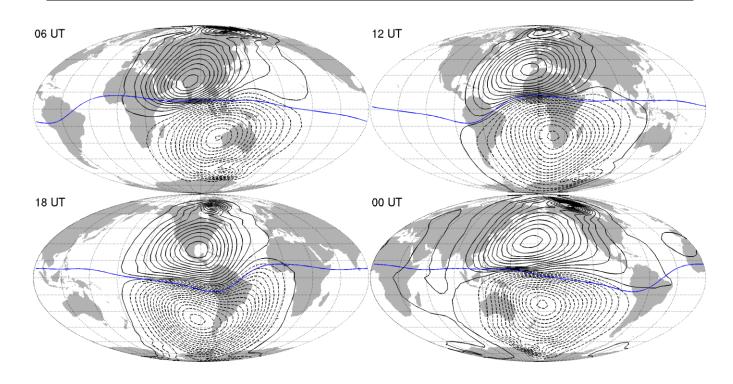


Figure 1-5: Equivalent current function, MIO_SHAi2C, Autumn

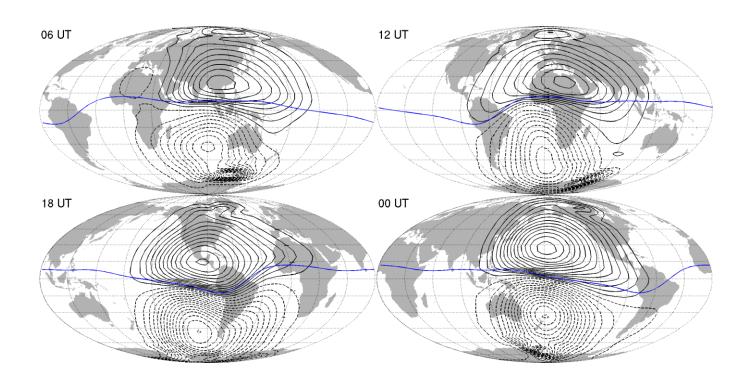


Figure 1-6: Equivalent current function, MIO_SHAi2C, Winter

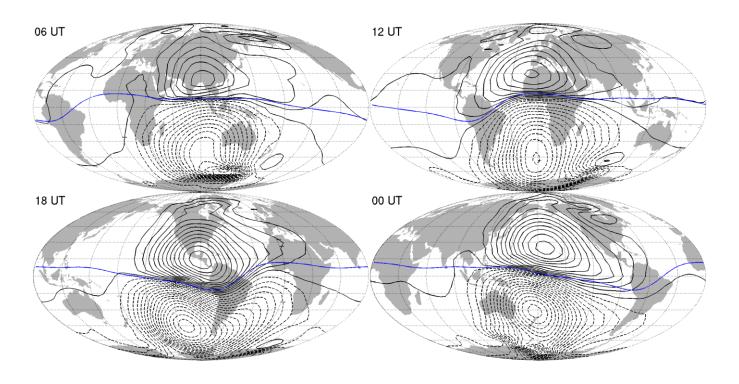


Figure 1-7: Equivalent current function, CM4, Autumn

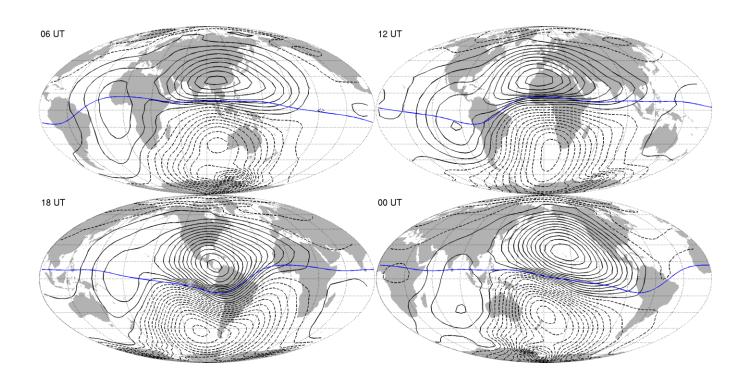


Figure 1-8: Equivalent current function, CM4, Winter

1.4.2 Data Statistics

The statistics of the measurement data obtained by the CI modelling is given in Table 1-2 below. Grey cells indicate data from night side, white cells indicate data from sunlit periods. Crossed cells indicate data which are not used in the inversion process. "Field" indicate the pure vector and scalar measurements, whereas "NS diff" and "EW diff" indicate the North-South (along-track) respectively East-West differences. The standard deviations (of the residuals between the observations and the estimated model) are quite impressive, and also show the expected similarity between Swarm A and C (side-by-side flying pair) and in the North-South differences for all three satellites. As also expected, Swarm B shows slightly higher residuals in the Field components at low and mid latitudes due to its higher altitude.

		Geomagnetic quasi-dipole latitude											
		Low, ≤ 10°			Mid,]10°55°]			High, > 55°					
			Standard deviations of data residuals, weighted, [nT]										
Swarn	n/Obs.\	$\sigma(B_r)$	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	σ(F)	$\sigma(B_r)$	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	σ(F)	$\sigma(B_r)$	$\sigma(B_{\theta})$	$\sigma(B_{\phi})$	σ(F)
A	Field	1.75	2.07	2.01	1.98	1.74	2.70	3.10	1.45	\times	\times	\times	8.55
	NS	0.39	0.19	0.40	0.16	0.25	0.31	0.39	0.16	\times	>>	>>	1.70
	diff	1.27	0.95	1.22	0.82	0.63	0.73	1.32	0.34	\times	><	\geq	2.54
В	Field	2.04	3.25	2.96	3.12	2.24	3.92	4.16	2.18	\times	>>	>>	8.15
	NS	0.39	0.18	0.38	0.16	0.25	0.31	0.39	0.17	\times	>>	>>	1.48
	diff	1.13	0.81	1.14	0.68	0.61	0.72	1.32	0.32	\times	\geq	\geq	2.23
C	Field	1.79	2.06	2.04	2.01	1.75	2.72	3.10	1.47	> <	\geq	\geq	8.56
	NS	0.41	0.19	0.41	0.17	0.26	0.32	0.41	0.16	> <	><	\geq	1.71
	diff	1.27	0.95	1.23	0.81	0.63	0.74	1.33	0.34	\times	$\geq \leq$	$\geq \leq$	2.54
A-C	EW	0.89	0.41	1.20	0.32	0.50	0.53	1.17	0.31	\nearrow	\nearrow		0.64
	diff	2.18	0.81	2.86	0.57	1.93	3.41	2.35	0.47	\searrow			0.78
_	Magnetic observatories		4.38	5.74	4.74	4.20	4.83	4.83	4.26	7.31	5.98	7.57	7.38
observ			11.29	10.54	11.27	8.50	10.01	7.12	7.65	16.67	13.99	14.79	14.61

Table 1-2: Observation Statistics

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_SHAi2C_20131126T000000_20160101T000000_0202

Page 12 of 16

1.5 Criteria

Table 1-3 below summarizes the criteria used to check the validity of the MCO_SHAi2C product:

Input	Test	Criteria	Pass?
Observations Residual statistics		Standard deviation of vector data below 7 nT.	Ok
Alternative model Comparison with model		CI model agrees with alternative model	Ok

Table 1-3: Validation criteria

2 Additional Information

2.1 Model Configuration and Data Selection Parameters

The MIO_SHAi2C product is obtained as a comprehensive co-estimation of the core, lithosphere, ionosphere, and magnetosphere field contributions including induced contributions similar to the method described in [Sabaka, GRL, 2016]. The complete model configuration used is given in Table 2-1 below; the MIO_SHAi2C product is the green part:

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Core	16/16	Order 4 B-spline with knots every year	Damping of the mean-square, second and third time derivative of $B_{\rm r}$ at the coremantle boundary (at 3480 km radius) and at Earth's surface. The damping makes the secular variation virtually linear.
Lithosphere	90/90	Static	Degree 17-90 purely determined by North-South differences from all satellites and East-West differences of lower pair satellite (A and C). Damping of B _r at the poles to reduce effect of lack of data at the poles ("polar gap")
Ionosphere	45/5 (dipole coordinates)	Annual, semi-annual, 24-, 12-, 8- and 6- hours periodicity	 Spherical harmonic expansion in quasidipole (QD) frame, underlying dipole SH n_{max} = 60, m_{max} = 12. F10.7 scaling plus induction via a priori 3-D conductivity model ("1-D mantle + oceans"). Regularisation of: Mean-square current density J in the E-region within the nightside sector (magnetic local times 21:00 through 05:00) Mean-square of the surface Laplacian of J multiplied by a factor of sin⁸(2θ) over all local times, where θ is colatitude.

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Magnetosphere, external	3/1	One hour bins	
Magnetosphere, induced	3/3	One hour bins	
M2 Tidal	36/36	Periodicity: 12.42060122 hr, phase fixed with respect to 00:00:00, 1999 January 1 GMT	

Table 2-1: Model Configuration

The data selection criteria are:

- Coarse agreement with CHAOS-6 field model: $\Delta B_c \le 500$ nT for all components c, and $\Delta F \le 100$ nT.
- $Kp \le 2^+$
- Time-derivative of Dst ≤ 3 nT/hour
- 15 second satellite sampling period
- core and tidal fields determined from night-side data only, i.e. with Sun $\geq 10^{\circ}$ below the horizon

2.2 Comments from Scientists in the Loop

2.2.1 Derivation of Model

The final Comprehensive Inversion model for the first two years of Swarm data show good agreement with alternative models and exhibit very good data residual statistics (Table 1-2).

2.2.2 Conclusion

The estimated model is assessed to be of good quality with very good agreement with the general structures of the ionospheric field.

Annex A Definitions of Tests

A.1 Mean square vector field difference per spherical harmonic degree

The mean square vector field difference between models per spherical harmonic degree (n) is diagnostic of how closely the models match on average across the globe. The difference between Gauss coefficients g_n^m of model i and model j can be defined as:

$$\sum_{i,j} R_n = (n+1) \left(\frac{a}{r}\right)^{(2n+4)} \sum_{m=0}^n \left[\sum_{i=0}^n g_i^m - \sum_{j=0}^m g_j^m\right]^2$$
Equation A-1

where n is the degree, m is the order, a is the magnetic reference spherical radius of 6371.2 km which is close to the mean Earth radius, and r is the radius of the sphere of interest, which is taken as r = a for comparisons at the Earth's surface and r = 3480 km for comparisons at the core-mantle boundary.

Summing over degrees n from 1 to the truncation degree N and taking the square root yields the RMS vector field difference between the models *i* and *j* averaged over the spherical surface:

$$_{i,j}R = \sqrt{\sum_{n=1}^{N} {_{i,j}R_n}}$$
 Equation A-2

A.2 Correlation per spherical harmonic degree

Analysis of spherical harmonic spectra is a powerful way to diagnose differences in amplitude between models but tells us little about how well they are correlated. The correlation per degree between two models again labelled by the indices i and j can be studied as a function of spherical harmonic degree using the quantity: $_{i,j} \rho_n$

$$\rho_{n} = \frac{\sum_{m=0}^{n} \binom{n}{i} g_{n}^{m} g_{n}^{m}}{\sqrt{\sum_{m=0}^{n} \binom{n}{i} g_{n}^{m}} \left(\sum_{m=0}^{n} \binom{n}{i} g_{n}^{m}\right)^{2}}$$

Equation A-3

Ideally, the correlation should be close to 1 for all models, indicating that they have equivalent features and coefficients. If the correlation falls below 0.5, for degrees 1-9, then the models should be examined in more detail. Coefficients from degree 10-13 in IGRF and WMM are less well-determined (e.g. due to noise) and also change more rapidly so are not expected to be well correlated by the launch of the Swarm mission.

A.3 Visualisation of coefficient differences

A final method of visualising the differences in Gauss coefficients is to plot the differences $_{i}g_{n}^{m}-_{j}g_{n}^{m}$ as a triangular plot, with the zonal coefficients lying along the centre of the triangle, the sectorial coefficients along the edges and the tesseral coefficients filling the central regions. These plots will illustrate which, if any, coefficients are strongly divergent between models

Intermediate validation of Swarm Level 2 Ionospheric Field Product SW_OPER_MIO_SHAi2C_20131126T000000_20160101T000000_0202

Page 16 of 16

A.4 Visualisation of spatial differences

A geographical investigation of the models can be made by plotting the differences in the B_x , B_y and B_z components of the field at radius r=a. Studying differences between the Swarm models and reference models in space yields insight into the geographical locations where disparities are located, illustrating whether biases or errors have arisen in certain regions (e.g. polar areas).

.