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Abstract Numerical experiment

“» From top-of-atmosphere (TOA) observations, atmospheric correction aims at * The MERMAID (http://mermaid.acri.fr/home/home.php) In-situ  matchup
distinguishing atmosphere (p,e,-) and water contributions (p,,). In coastal database Is a comprehensive dataset that gathers In-situ measurements of water
areas the water and aerosol spectra may show some similarities. In these leaving radiances, 10Ps, and MERIS TOA reflectances. To validate the
areas, a priori on the variable distributions to be estimated are needed to proposed methodology, the radiometric in-situ profile dataset has been
correctly unmix the signals and converge towards positive & realistic divided randomly in two Independent datasets: a training dataset (to estimate the
estimates. model parameters) and a validation dataset [1].

¢+ From a methodological point of view, our algorithms MeetC2 relies on a Validation of the inversed p,, (4)with an independent matchuo{ﬁg}ataset.
Bayesian inference using Gaussian Mixture Model prior distributions on P12 P s :
reference spectra of p,.,- and p,, [1]. el 1

« Associated with the water normalised reflectance estimates, p,,,, a total : | f,f. Y O i
uncertainty op,,,, i.e. a combination of the TOA level 1 reflectance B *f"* e A ¥
uncertainty and the Bayesian inversion uncertainty is provided for each pixel. o oo on o oo o1 o o1 o 0.

Figure 2. comparisons between the estimated p,, at 412, 442, 560 and 681 nm using MEETC2 vs in-situ (red), MEGS 8 vs in-situ

(blue) and C2R (NN) vs in-situ (green) [1].

Comparisons of the inversed p,,(4) with state-of-the art algorithms.
MeetC2 functional Scheme MEETC2 p. (412) MEETC2 . (560) MEETCZ o (81)
: 0.1 =
e

*» We consider the classical multiple scattering radiative transfer equation and .0'08
start from the Rayleigh corrected reflectance variable pz- (1) [1]: .0:06

Prc(A) = ng(A) — PRay (D) = paerD) + tz(1).py, (1) + pcoupl(/l) T € (1)
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»» Bayesian model introduces priors on the variable to be estimated and resort to 0
maximise the a posteriori likeltihood (MAP criterion):

P(Xa; lepRC: Pa, Pw) @ P(ppre |Xa: X 1 Pa Ow) -P(Xal(Pa)- P( le(Pw) (2)

MEGS p, (560)
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where Xa = the polynomial coefficients of the aerosol models [1].
Xw = the coordinates of p  In the reference basis [1].
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o, ~1p,(780),c,0v,0Os,0y}, observed or pre-estimated covariates (step 1, |
Figure 1) conditioning the a priori shape of the water reflectance

spectrum to be estimated [1].

P =1Pser (865),c,Ov,0s}, observed or pre-estimated covariates (step 1,
Figure 1) conditioning the a priori shape of the aerosol reflectance
spectrum to be estimated [1].
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Figure 3: Estimated p (412,560, 681) from the MERIS FR Level 1 image of the 20040209 over the French river La Seine’s
estuary. Top, MEETC2 retrievals, middle, MEGS v8 and bottom C2R retrievals. In pink are highlighted negative reflectances.
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*» Figure 1 summarises the 4 steps involved In the atmospheric correction
MEETC2 Bayesian inversion.

: 1/ Estimation of : b

geometry conditions and Bright Pixel

Estimation (BPE)
k )

a ST
2/ Updates of the a priori distribution
of X &X given ¢ (Eq 6, [1])
\ J 0‘04
0'03 Figure 4: A first result (not verified) of the MEETC2 atmospheric
@ ;40002 correction using the OLCI RR image of the 20 April 2016 over
~ “ 0'01 the Baltic Sea.
3/ 25 random Initialisations given the a priori |
distribution. For each initialisation
X X =argmin _ _f|\x,X ,tg, 1P N _ _ _
= i o ( " ) gc) / <+»The ambition of a Casel&2 algorithm to inverse operationally the OLCI water
@ leaving reflectances: the Bayesian formalism is particularly suitable to address
~ _ _ ™ transitions between water types and avoid negative estimates in coastal turbid
4/ Optimal solution for X, X, areas
(1.e. the maximum posterior likelihood for the 25 '
. initialisations) ) s+ The natural observed variability of the aerosol (water) variables, conditioned by the
Q g geometry conditions and the concentration of aerosols (water optically active
constituents), will be addressed using radiative transfer simulations.
[ Level 2 p,,,, Paer J [ Total Uncertainties o, , 0, J % The quasi-randomised Initialisations (Figure 1, step 3) involve multiple inversions
| | | | o for each pixel leading to high computational costs. Consequently, a parallelised
Figure 1: operational scheme for the atmospheric correction MEETC2 Bayesian inversion. ] ] ]
Implementation of MEETC2 will be developed.
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