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ABSTRACT 

In this study unmanned aerial vehicle (UAV) image (pho-

tograph) based point clouds and products were compared to 

airborne LiDAR based data and products  over a forested 

area. The test site is located in  Germany, 15 km southeast 

of Jena. A total area of approximately 175 ha was covered 

during a UAV flight campaign. For this study, a subset of 4 

ha (200 m x 200 m) was defined. The UAV-LiDAR com-

parison was accomplished at three different data levels: 1.) 

Point-like level (raster of maxima), 2.) Surface level (cano-

py height models - CHM), and 3.) Tree level (detection 

rate). In general, a h igh match between LiDAR and UAV 

based data/products  was observed. The UAV data exh ibits 

more details which is of particular importance for the de-

tection of small trees. While using LiDAR data 45 out of 

205 trees were not detected, only 14 trees were missed out 

when UAV data was used. 

1. INTRODUCTION 

The utilisation of UAVs for the acquisition of ultra -high 

resolution imagery has heavily increased during the past 

five years. Once the hardware is purchased, images can be 

recorded almost at any t ime and at low cost. The image 

parameters can be determined in terms of spectral channels, 

image overlap, and geometric resolution [1]. The overlap 

between the images enables stereoscopic image processing, 

the delineation of point clouds and the generation of seam-

less image mosaics. UAV image data p roducts have gath-

ered high interest in the forestry community [2-5]. 

Our major goal is to delineate several forest parameters 

such as canopy height, canopy cover, tree location, number 

of trees, tree density, tree height, stem volume, and tree 

species to create high quality reference data to investigate 

the impact of forest structure on Synthetic Aperture Radar 

(SAR) backscatter. Commonly, fo rest inventory does not 

contain the required details for this kind of investigation. 

The main aim of this study is to evaluate the quality of 

UAV image based point clouds over forest. For this as-

sessment the UAV data was compared to LiDAR data, as 

the spatial d istribution of uncertainty cannot be assessed by 

the UAV data itself [6, 7]. A  direct  pointwise comparison 

with LiDAR is not feasible. Hence, we compared the data 

at three different levels: 1.) At point-like level employing 

one raster each featuring the elevation of the highest point 

within the cell. 2.) At surface level employing both CHMs. 

For this step, pit-free CHM models were delineated. Due to 

the differing data characteristics of UAV and LiDAR d if-

fering processing parameters had to be used, which might 

bias the direct comparison. Nevertheless, CHMs are im-

portant products as they form the base for many applica-

tions and higher level products . 3.) At tree level, were the 

commission and omission rates of a tree detection algo-

rithm were compared for both data sets. 

2. STUDY AREA 

The study area is part of the Roda-River catchment, which 

is located 15 km southeast of the city o f Jena, Germany 

(Figure 1 and Figure  2). The forest in the study area is in-

tensively managed. The main tree species are spruce and 

pine, larch and birch occur as well. Most forest stands are 

homogeneous in terms of species composition and tree age, 

the tree density of the older stands shows a high degree of 

variability in part. Forest inventory data is available fo r 

many stands. However, it only provides stand-wise averag-

es of relevant information (such as tree height, species 

compositions, relative stocking etc.). 

 

 
Figure 1. Roda catchment (green polygon) 

The study area features gentle terrain with elevations be-

tween 300 m and 400 m. The underlying bedrock (Early 

Trias – bunter), causes slightly acidic soils. 

The presented results are based on a subset of the study 

area covering 4 ha (200 m x 200 m) of forest. For a part of 

this subset terrestrial laser scanner (TLS) data was ac-

quired. This data was used to validate some of the results. 



                           

 

 

 

 

Figure 2. Catchment of the Roda-River. The red polygon 

frames the UAV flight campaign area 

3. DATA 

3.1. UAV data 

Due to technical and legal restrictions, the study area (flight 

campaign area) was subdivided into seven sectors. Each of 

the sectors covers an area of approximately  25 ha. The 

flight duration was 7-10 minutes for each sector; the flight 

speed was set to 8 ms
-1

. The flight route was p lanned and 

uploaded to the UAV before take-off. After take-off the 

UAV was switched to autopilot mode. To ensure intervisi-

bility with the UAV X8000 (Figure 3), a plat form at the 

height of the treetops carrying the pilot was necessary. The 

platform was provided by the voluntary fire brigade of 

Stadtroda, who made their turntable fire-escape ladder 

truck including staff available. 

 

 

Figure 3. Logo-Team Geocopter X8000 

For the orthorectification several teflon targets were dis-

tributed over the flight sectors (see Figure 4, ca. 5 m in 

front of the fire truck). The location of the targets was de-

termined using DGPS. Table 1 summarizes the acquisition 

parameters of the UAV data. We acquired RGB (Figure 4) 

and multispectral (Figure 5) images. Th is study is based on 

the RGB data only. 

 

 

TABLE 1: Details of UAV data acquisitions  

Acquisition date 09th September 2014 

Weather 14°C, calm, mostly cloudless  

Instruments Sony NEX-7 (f 19 mm, 1/400 s, ISO200) 

Tetracam mini MCA 2 ILS, Filters: Blue, 

Green, Red, Red Edge, Near Infrared 

Platform Logo-Team Geocopter X8000 

Flight altitude 100 m over treetops 

Area covered 175 ha (7 flights per camera) 

Overlap 80% in flight direction 

60% between parallel tracks 

Number of 

images 

Sony NEX-7: 1,750 

Tetracam mini MCA: 2 5,200 

Resolution  NEX-7: 2 cm (on ground) 

miniMCA: 8 cm (on ground) 

 

 

Figure 4. Sony NEX-7 RGB data example 

 

Figure 5. Tetracam miniMCA2 data (NIR/RedEdge/Green) 

Image mosaics and point clouds were delineated using 

structure from motion (SfM) techniques as implemented in 

Agisoft Photoscan 1.2.4 [8]. The internal processing steps 



                           

 

 

 

involve a) the detection of stable points (for differing 

viewpoints and lighting) in the images, b) the generation o f 

descriptors for each point to find correspondences across 

the images, c) resolving camera orientation parameters, 

d) finding camera locations using a bundle-adjustment, and 

e) dense surface reconstruction and texture mapping. Ac-

cording to Agisoft (personal communication) several im-

plemented processes are based on previous publications. 

Though, PhotoScan is commercial software and the code is 

not published. 

 

Figure 6. Tetracam mini MCA2 image mosaic of flight sec-

tor 1 (NIR/RedEdge/Green, ca. 450 m x 550 m) 

The user driven PhotoScan processing includes image 

alignment and generation of a sparse point cloud, georefer-

encing the data using DGPS measurements, refinement of 

image alignment, filtering of sparse point cloud and elimi-

nation of erroneous points, and generation of a dense point 

cloud and image mosaics . Figure 6 shows an image mosaic 

based on 490 Tetracam mini MCA2 images. A natural col-

or point cloud example is given in Figure 7. The RGB point 

clouds feature approximately 80,000,000 points per flight 

sector which corresponds to 310 points/m². Figure 8 depicts 

the UAV point cloud of the 4 ha subset of flight sector 1.  

 

Figure 7. Detail view of Sony NEX-7 RGB image data 

based point cloud (natural color) 

 

Figure 8. Subset (4 ha, 200 m x 200 m) of Sony NEX-7 im-

age data based point cloud. Mind that North is to the left. 

3.2. LiDAR data 

The LiDAR data was acquired in the same year as the 

UAV data, however at a  different season (winter). Alt -

hough non-deciduous trees are dominant in the 4 ha subset, 

the matter might impact some of the results of this study. 

Figure 9 shows the same subset as Figure 8. The lower 

point density of the LiDAR data (4-8 points/m²) is clearly 

visible. Bright areas (left and right side) occur were two 

LiDAR t racks overlap (8 points/m²). Tab le 2 summarizes 

the key parameters of the LiDAR data. 

 

Figure 9. Subset of LiDAR data (non-ground points) 

TABLE 2: Details of LiDAR data acquisitions  

Acquisition date 15th February 2014 

Instrument Optech ALTM Gemini 

Point density 4-8 points/m² 

Footprint diameter 0.15 – 0.25 m 

Height RMS < 0.08 m 

Platform Cessna 208 Caravan 

Flight altitude approximately 1000 m above ground 

Points classes ground & non-ground, each subdivid-

ed into first, last, only 

Supplier Thuringian land surveying office 

 

 



                           

 

 

 

3.3. TLS data  

TLS data is used for forestry applications for about 15 

years. Using this technique the forest can be scanned rapid-

ly in millimetre-level detail [9]. Our TLS campaign was 

conducted at the same day as the UAV flights. Nine scan 

positions set up within the area of the 4 ha subset. At each 

of the positions two scans were conducted (one horizontal 

and one vertical). Th is approach led to a very dense cover-

age of stems, undergrowth, and canopy. For the coregistra-

tion of the indiv idual scans artificial reflectors were in -

stalled. The scanner positions were determined by Differ-

ential Global Navigation Satellite System (dGNSS) and 

conventional surveying (trigonometric surveying). The key 

parameters of the TLS data are summarized in Table 3. 

 

TABLE 3: Details of LiDAR data acquisitions  

Acquisition date 09th September 2014 

Instrument Riegl VZ 1000 

Area 220 m x 165 m 

Number of scan positions 9 (one horizontal and one verti-

cal scan per position) 

Angular resolution 0.02 and 0.04 degrees 

Number of points 432,026,502 

Positional uncertainty of 

single scans (relative) 

0.005 m to 0.016 m (1 sigma) 

Positional uncertainty of 

single scans (absolute) 

2.5 cm (1 sigma), precision bet-

ter than 1.0 cm 

 

 

Figure 10. Data example of Riegl VZ 1000 TLS data ac-

quired within subset 

By means of the TLS point cloud the position of 205 t rees 

was manually detected and labelled. These trees were used 

as reference for the validation of the tree detection rate. 

4. METHODS 

The processing of the point clouds was conducted using the 

software package LASTools  (version from 02/2016). First 

of all, the LiDAR and UAV point clouds were normalized 

for terrain. The terrain height was determined from the Li-

DAR ground returns using the pulses being classified as 

last or only. Secondly, all points below zero and above 

50 m were eliminated. 

 

4.1. Generation of raster data from point clouds 

The direct comparison of UAV and LiDAR points is not 

feasible, as the center position of two corresponding points 

(one LiDAR and one UAV point) and the footprint of the 

points are differing. Consequently, for comparing LiDAR 

and UAV data, quadratic raster were generated. The values 

of the raster cells were set to the height of the highest point 

within each cell. W ith regard to the LiDAR data only non-

ground points (first and only) were used. If no point lies 

within a cell the raster value was left empty (no data). 

The cell size was 0.25 m x 0.25 m for the LiDAR data and 

0.10 m x 0.10 m for the UAV data. Thus, the LiDAR cell 

size roughly corresponds to the coverage of one LiDAR 

footprint. Due to the maximum point density of 8 points/m² 

it is unlikely that more than one LiDAR points lies within 

one raster cell. According to the average UAV point dens i-

ty of 310 points/m² the average number of points per UAV 

raster cell is 3.1. The approach of selecting the maximum 

value within  one cell might result in a slight bias towards 

greater heights in the UAV raster, when compared to the 

LiDAR raster. Nevertheless, this strategy was chosen to 

derive raster representing the top of the canopy. 

The rasterizat ion causes a reduction of the geolocation ac-

curacy of the points. The theoretical maximum deviat ion of 

point coordinate and raster coordinate equals one half o f 

the diagonal of one raster cell, i.e. 0.178 m for the LiDAR 

case. The reduction of geolocation accuracy can result in a 

slight reduction of the correlation magnitude between UAV 

and LiDAR, but it does not introduce a bias. 

 

4.2. Generation of CHMs from point clouds 

Canopy height models (CHM) are used as input for many 

forestry related data products. For example, several tree 

detection algorithms are based on CHMs [10-12]. Some of 

these algorithms provide better results, when CHMs with-

out pits within one tree crown (p it-free) are used. For this 

reason, we decided to use the approach suggested by [13], 

which is implemented in the LASTools software. The final 

geometric resolution of the LiDAR data was 0.25 m and 

0.05 m for the UAV data. The relat ionship between LiDAR 

and UAV resolution roughly represents the relationship of 

the point densities. The chosen resolutions might cause 

slight oversampling, which  was preferred  against loosing 

informat ion. The maximum interpolat ion distance for both 

datasets was set to 1 m. The LASTools parameter 

spike_free, which steers the magnitude of the p it-filter, was 

set to 1.5 for the LiDAR and 0.5 for the UAV data. 

 

4.3. Tree detection 

Tree detection was accomplished based on the previously 

delineated pit-free CHMs. The chosen algorithm searches 

for the local maximum within the search window, while the 

dimensions of the search window are steered by the CHM 

height [14]. This algorithm is implemented in the Cano-

pyMaxima function of the FUSION software [15]. Alt -



                           

 

 

 

hough relat ively simple, this approach showed good results 

when compared to other methods [11, 12]. The relationship 

between the search window size and the CHM was adjust-

ed to the forest characteristics of the 4 ha subset by estimat-

ing the tree height (ht) – crown diameter (dt) relationship 

using the TLS data. Both parameters were measured manu-

ally  for the 205 detected trees. Based on these measure-

ments the following empirical equation (1) was established: 

 

dt = 0.003028ht² + 0.063312ht (1) 

 

The coefficient of determination (R²) for (1) was 0.81. The 

other parameters of CanopyMaxima were set as follows; 

LiDAR: res = 2.0, mult = 1.0, UAV: res = 0.625, mult = 

1.0. The minimum tree height was 10 m. 

5. EXPERIMENTAL OBSERVATIONS 

5.1. Rasterized point clouds 

Figure 11 and Figure 12 show overlays of the UAV and the 

LiDAR raster, were in both cases the LiDAR raster is the 

upper layer. No data pixels are transparent. As the LiDAR 

raster features a high number of no data pixels (> 50%), a 

large partition of the UAV data is visible. The effect of the 

high partition of no data pixels in the LiDAR data is evi-

dent in the outer frame of Figure 11. Th is figure shows a 

part of the test site, which is slightly greater than the 4 ha 

subset. For the outer frame, only LiDAR raster data is 

available, while for the 4 ha subset LiDAR and UAV data 

are shown. 

 

 

Figure 11. Rasterized UAV and LiDAR point clouds using 

highest point within raster cell. Upper layer: LiDAR raster. 

Lower layer: UAV raster. Mind the “frame” were only 

LiDAR data is available. 

As the same legend for LiDAR and UAV was applied, the 

LiDAR pixels are not distinguishable when they feature the 

same height as the UAV p ixels. This effect becomes obvi-

ous when viewing Figure  12 which depicts the raster for a 

single tree crown. In overall, LiDAR data and UAV data 

show good agreement. However, some LiDAR p ixels fea-

ture a much smaller height compared  to the UAV raster. 

Obviously, some LiDAR shots are capable to penetrate 

through the canopy and are reflected at  lower branches. On 

the other hand, there might be gaps in the canopy which are 

not detectable by the UAV data. Thus, there might be dis-

similarities caused by the different acquisition systems 

(passive vs. active, stereogrammetry -like vs. direct meas-

urement  etc.). Furthermore, the different acquisition season 

might have some impact, even though Figure 12 shows a 

non-deciduous tree. 

 

 

Figure 12. Data example of rasterized point clouds for one 

tree. The (coarser) LiDAR pixels are visible when they fea-

ture a different height than the underlying UAV pixels. 

The good agreement between both dataset is demonstrated 

by Figure 13. This scatterplot considers all pixels with 

heights greater 10 m. Some of the clutter is due to the dif-

ferent geometric resolutions of both raster. Also, the previ-

ously discussed issues cause clutter. Nevertheless, the cor-

relation is high (r = 0.89). 

 

 

Figure 13. Scatterplot LiDAR vs. UAV based on raster for 

the 4 ha subset 



                           

 

 

 

In overall, the UAV based heights are 1.5 m higher than the 

LiDAR heights. One reason for this observation might be 

related to the different acquisition systems and different 

seasons as discussed above. Another reason goes back to 

the delineation of the raster as discussed in section 4.1. The 

LiDAR reflection is registered at the sensor when the re-

flected energy exceeds a defined threshold. Small objects, 

such as twigs that constitute only a minor fract ion within  

the LiDAR footprint might not cause sufficient reflection 

for a distance measurement, while such objects can be re-

solved by the UAV data. Eventually, part of the bias can be 

explained by tree growth during the seven months between 

the acquisitions. 

5.2. Canopy height model 

Figure 14 shows the UAV data based CHM for the 4 ha 

subset. This subset contains clusters with large trees (top of 

the image) and also an area with s mall trees (bottom). The 

higher point density of the UAV data might be of part icular 

interest for areas with small trees and small-sized crowns. 

 

 

Figure 14. UAV data based CHM of the 4 ha subset 

Figure 15 and Figure 16 show an enlarged subset featuring 

small trees. The comparison of both figures reveals the 

higher degree of details in the UAV data based CHM 

(Figure 16). Some structures and patterns in Figure 15 (Li-

DAR) cannot be clearly related with single tree crowns, 

while the UAV data provides sufficient details for the vis u-

al recognition of those trees. 

Accordingly, the difference image LiDAR–UAV (not pro-

vided) primarily reveals differences in areas with small 

trees. Additionally, in  the UAV data the treetops are slight-

ly higher compared to the LiDAR CHM. Due to the very 

high point density of the UA V data most of the treetops are 

captured in detail, while treetops are missed out regularly 

by the LiDAR shots. 

 

Figure 15. Section (60 m x 40 m) of LiDAR based CHM 

featuring small trees. The small trees can be hardly dis-

criminated. 

 

Figure 16. Section (60 m x 40 m) of UAV based CHM. 

UAV data shows more details compared to LiDAR. 

Nevertheless, both CHMs show a great agreement, as indi-

cated by the scatterplot (Figure 17). Part of the clutter is 

due to the different resolutions of both datasets and the 

higher degree of details in the UAV data. The bias is small-

er compared to point-like comparison (Figure  13), as fo r 

the UAV CHM all points were considered instead of using 

the maximum point within one raster cell only. St ill, the 

UAV heights are 0.85 m increased against the LiDAR 

heights. Due to the smaller point density the LiDAR might 

miss out the highest features of a tree (e.g. treetop), while 

this feature is preserved in  the UAV data. Also, s mall ob-

jects might not cause sufficient reflection which  results in 

some penetration of the LiDAR pulse into the canopy, 

while the UAV based point clouds represent the top of the 

canopy. Again, seasonal effects  and in particu lar tree 

growth certainly have some impact. 

 



                           

 

 

 

 

Figure 17. Scatterplot LiDAR vs. UAV based on CHMs for 

the 4 ha subset 

5.3. Tree detection 

For the 4 ha subset in total 1,789 trees were detected based 

on the LiDAR CHM, while 2,115 trees could be delineated 

using the UAV CHM. Figure 18 shows the position of the 

detected trees. In many cases, LiDAR and UAV detect the 

same potential tree. 

 

 

Figure 18. Delineated tree positions over UAV CHM 

The detection rates and the commission errors were com-

puted using the manually determined TLS-based positions 

of 205 trees. Compared to the remaining subset the refer-

ence trees exhibit  an average height and crown d iameter. A 

tree was counted as detected when the tree position was 

located within the 1.5 m rad ius of the reference tree posi-

tion. The results are as follows: 

LiDAR 

Detection rate:  78.0% (45 trees missing) 

Commission:    9.8% (20 trees) 

UAV 

Detection rate:  93.2% (14 trees missing) 

Commission:  10.7% (22 trees). 

 

The commission (false positive detection) is similar fo r 

both datasets. Thus, the comparison of the detection rate is 

justified. The detection rate using UAV data is 15% higher 

compared to  LiDAR which  is due to the higher level o f 

details in  the UAV CHM. False positive detections oc-

curred primarily when major branches were extending into 

a canopy gap. Another source of false detections is  small 

trees with two treetops. In several cases  the same false de-

tection (the same false tree) occurred in the LiDAR and 

UAV case. Most of the missed out trees are small t rees 

located very close to a large tree. In this case, the crowns of 

both trees are almost connected. More sophisticated tree 

detection algorithms, in particular point based approaches, 

might be capable to delineate some of these partly h idden 

trees [10, 11, 16-18]. For the scope of this data driven study 

the selected tree detection algorithm was sufficient. 

6. SUMMARY, CONCLUSIONS AND OUTLOOK 

In general, good agreement between LiDAR and UAV 

based data and products has been observed. Compared to 

LiDAR, UAV data provides more geometrical details and 

thus leads to improved tree detection. The UAV based data 

features slightly greater heights compared to the LiDAR 

data. As discussed in the results, this observation can be 

explained by four major reasons: 1.) The much higher point 

density in the UAV data (LiDAR pulses might miss out the 

highest tree elements), 2.) The slight penetration of the 

LiDAR pulse into the canopy (small objects such as a small 

branches might not cause sufficient reflection), 3.) The 

increased penetration of the LiDAR pulse due to data ac-

quisition in winter, and 4.) Tree growth in the seven 

months period between LiDAR and UAV data acquisition. 

According to the above findings UAV image data can be an 

alternative for areas where no LiDAR data is available or 

frequent acquisitions are required.  

This study will be extended to a larger area including broad 

leafed trees and a higher number of reference trees. Fur-

thermore, the height accuracy of the delineated trees will be 

investigated. This step as well as the tree detection accura-

cy will be conducted separately for various height classes. 
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